

Journal of Environmental Radioactivity 53 (2001) 241–256

www.elsevier.com/locate/jenvrad

Factors controlling ⁷Be and ²¹⁰Pb atmospheric deposition as revealed by sampling individual rain events in the region of Geneva, Switzerland

S. Caillet, P. Arpagaus, F. Monna^{*,1}, J. Dominik

Institut F.-A. Forel, Université de Genève, 10 route de Suisse, CH-1290 Versoix, Switzerland

Received 20 April 2000; received in revised form 28 June 2000; accepted 3 July 2000

Abstract

Bulk atmospheric deposition of ⁷Be and ²¹⁰Pb has been measured at Versoix, close to Geneva, Switzerland. Collectors were continuously deployed from November 1997 through November 1998 for periods from 1 to 22 days depending on the frequency of rain. The activities of ⁷Be and ²¹⁰Pb integrated over the sampling interval were moderately well correlated with rainfall (r^2 of 0.66 and 0.55, respectively; p < 0.001) and well correlated one with the other (r^2 of 0.91; p < 0.001). The ⁷Be/²¹⁰Pb activity ratio is close to 13.5, except for samples collected in the periods of very low precipitation which have a distinctly lower ratio. A simple model accounting for rainfall, seasonal variations and reload of the local atmosphere after a rain event explains 90% of the variance of ⁷Be and ²¹⁰Pb deposition. Concentrations of ²¹⁰Pb and Ca⁺⁺ in rain were correlated with transport time of air masses over the continent as indicated by reconstruction of air mass trajectories over three days. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: 7Be; 210Pb; Rain; Precipitation; Atmosphere; Deposition

1. Introduction

The natural radionuclides ⁷Be and ²¹⁰Pb have found numerous applications in studies of transport processes in atmospheric and aquatic systems. ⁷Be is a cosmogenic radionuclide produced in atmosphere by spallation of oxygen and

^{*}Corresponding author. Fax: +33-3-80-39-63-87.

E-mail address: fabrice.monna@u-bourgogne.fr (F. Monna).

¹Present address: GéoSol UMR-INRA, CST, 6 bd Gabriel, Université de Bourgogne, F-21000 Dijon, France.

nitrogen by high-energy cosmic-ray particles. It is removed from the atmosphere by radioactive decay (half-life 53.2 days) and by wet and dry deposition. The mean tropospheric residence time is estimated at between 22 and 48 days (Bleichrodt, 1978; Durana, Chudy & Masarik, 1996). The global ⁷Be distribution has been described and modelled (Brost, Fleicher & Heimann, 1991; Koch and Mann, 1996).

Most of the ²¹⁰Pb in the atmosphere is formed as a decay product of ²²²Rn emanating from soil. Early applications of ²¹⁰Pb as a tracer of atmospheric processes have been reviewed by Robbins (1978). Somewhat conflicting residence times of ²¹⁰Pb in the troposphere ranging from days to one month have been reported, depending on the method used, but the detailed study by Tokieda, Yamanaka, Harada and Tsunogai (1996) confirms the relatively short residence time of tropospheric aerosols carrying ²¹⁰Pb (4.8 ± 0.3 days). Preiss, Melieres and Pourchet (1996) compiled most of the surface air concentrations and atmospheric fluxes available in the literature.

Although the data-base of ⁷Be and ²¹⁰Pb atmospheric deposition is growing, mainly due to routine monitoring programmes of radioactive fallout, the factors inducing temporal variability of atmospheric fluxes at a given location are not quite fully understood. In the majority of studies, a moderate correlation between radionuclide fluxes and rainfall is observed, whereby generally higher correlation coefficients are found for ⁷Be than for ²¹⁰Pb (Olsen et al., 1985; Schuler et al., 1991). In contrast, the correlation between ⁷Be and ²¹⁰Pb fluxes at the same location is generally good (Baskaran, Coleman & Santschi, 1993) in spite of the different origins of these radionuclides.

The goal of this study is to evaluate the importance of factors which, apart from rainfall, influence the removal of ⁷Be and ²¹⁰Pb from the atmosphere. To this purpose, sampling after individual rain events was undertaken. We demonstrate here that the season and time elapsed between consecutive rain events significantly affect the magnitude of deposition of both radionuclides.

2. Materials and methods

Atmospheric traps collecting bulk deposition were installed from November 1997 to November 1998 at the Institute F.-A. Forel, located in Versoix (N46°16′28″-E6°10′16″), 10 km east of Geneva. They were placed on top of a mast, 3 m above the ground, to avoid, as much as possible, any soil-derived contribution. The sampling station is located on a jetty and the land near the lake shore is covered with grass. In a number of samples, ²¹⁰Po was measured. The ²¹⁰Po/²¹⁰Pb ratio was close to 0.1, indicating that direct re-suspension of soil particles was not a problem, at least for the samples examined. The sampling site is located at an altitude of 372 m; the annual average rainfall is 1000 mm. Prevailing wind directions are from the NE, bringing generally dry air, and from the W, bringing maritime, humid air.

The first trap consisted of a cylindrical polyethylene jar with a surface area of 0.275 m^2 (capacity 200 l). Samples were collected after each individual precipitation event and the trap replaced. Three litres of 1.5 N HNO₃ were poured into the trap

prior to each deployment in order to prevent adsorption of radionuclides on the jar wall. Stable Pb and Be (4 and 0.1 mg, respectively) were also added as tracers for checking the overall recovery. These quantities of stable metals were always in large excess over those expected from atmospheric input.

After exposure, the collector was emptied and rinsed with deionised water. This washing solution was then added to the sample. The largest particles were removed by filtration on a paper filter (Schleicher and Schuell). Stable and radioactive Be and Pb were concentrated by co-precipitation with Fe hydroxides similarly to the method described by Thompson and Turekian (1976) for seawater. Briefly, 0.55 mg of FeCl₃ was added per litre of sample, which had a pH < 1. After one day of equilibration, Fe(OH)₃ was precipitated by adding NH₄OH. This precipitate was removed by centrifugation, freeze-dried and dissolved in 40 ml of 1 N HCl.

The solution was transferred to a 250-ml gamma counting vial and measured in a closed-end high-purity Ge GMX coaxial detector (EG&G Ortec) coupled to an EG&G Ortec Spectrum Master 919 multichannel analyser. Energies at 46.5 keV and 477.7 keV were monitored for ²¹⁰Pb and ⁷Be determination. Spectra were evaluated with the GammaVisionTM software. Relative efficiencies were determined by measuring artificial standard solutions of ²¹⁰Pb and ⁷Be isotopes exactly in the same conditions as the unknown samples. Typically, each solution was counted for 3–4 days to provide the lowest reasonable analytical error. ⁷Be activities were corrected for decay to the time of deposition.

An aliquot of the sample was also measured by quadrupole-based ICP-MS (HP4500) for stable Pb and Be content. Their concentrations were measured with a typical precision of 2% and were used for the calculation of the overall recovery efficiency. Recoveries were fairly constant at \sim 75–90% for both elements.

A second trap, for major element determination, was placed beside the 'radionuclide' jar and was retrieved at the same time. It consisted of a pre-cleaned polyethylene pot covered by a funnel with a surface of 0.047 m², except during winter when the funnel was removed because of the snowfall. At that time, the collecting surface area was reduced to 0.017 m². The samples were filtered through a 0.45 μ m cellulose nitrate membrane and were divided in two parts: (i) 50 ml were acidified with 0.3% HNO₃, stored at 4°C, for further Ca⁺⁺ and Na⁺ analysis carried out by AAS (Pye Unicam SP-9), (ii) 50 ml were stored at -30° C and Cl⁻ was measured with IC (Dionex DX 500). Both methods have a precision of about 5%.

Meteorological data were provided by the Swiss Meteorological Institute (SMI) from the closest station at Geneva airport, about 5 km away from the sampling site. Although this distance is short, significant discrepancies may occur, particularly during local storms. However, a comparison of rainfall amount from three stations, all located within 10 km of Geneva, has shown that the variability for one individual event generally did not exceed 10%. Three-D backward trajectories of air masses at the pressure 850 hPa over a period of 3 days, starting from the moment of the maximum rain intensity, were computed by the SMI. For each rain event the distance and the duration of air mass travel over the continent were evaluated.

3. Results

Samples from 46 rain events were collected from November 3, 1997 to November 2, 1998. The total (wet and dry) integrated activities of ⁷Be and ²¹⁰Pb deposited during the exposure time from 1 to 22 days (avg : 8 days), expressed in Bq m⁻², are reported in Table 1. The concentrations of ⁷Be, ²¹⁰Pb, Ca⁺⁺, Na⁺ and Cl⁻ were obtained by dividing the total amount of element deposited during exposure by the amount of precipitation measured at Geneva airport (Table 1). The integrated activities of each individual event varied widely from 0.5 to 12.6 Bq m⁻² for ²¹⁰Pb and from 1.6 to 177 Bq m⁻² for ⁷Be. At the same time, precipitation varied between 0.2 and 66.4 mm. From these data, annual fluxes of 150 ± 3 Bq m⁻² y⁻¹ for ²¹⁰Pb and 2087 ± 23 Bq m⁻² y⁻¹ for ⁷Be were calculated, values comparable to those already reported for Switzerland, i.e. 108, 138 and 153 Bq m⁻² y⁻¹ for ²¹⁰Pb, and 2250, 2660 and 2760 Bq m⁻² y⁻¹ for ⁷Be (Dominik, Schuler & Santchi, 1987; Schuler et al., 1991; Vogler, Jung & Mangini, (1996).

The concentrations of individual events varied from 0.06 to 3.30 Bq 1^{-1} for 210 Pb and from 0.93 to 10.45 Bq 1^{-1} for ⁷Be. However, some events, corresponding to low rainfall (<5 mm), were characterised by significantly higher ⁷Be and 210 Pb activities. Concentrations varying between 0.07 and 1.16 mg 1^{-1} , 0.07 and 0.65 mg 1^{-1} and 0.09 and 2.48 mg 1^{-1} were observed for Cl⁻, Na⁺ and Ca⁺⁺, respectively.

3.1. Seasonal pattern

After monthly averaging, higher means of radionuclide concentrations appeared in June, July and August. Application of the student's *t*-test indicated that the differences between this group of samples and the others are significant at a probability greater than 99%. No such trends were noticed for the major element concentrations.

4. Discussion

4.1. Relationship between the amount of individual precipitation and radionuclide activities

The integrated activities by event of ²¹⁰Pb and ⁷Be are correlated with the magnitude of precipitation with correlation coefficients (r^2) of 0.55 and 0.66, respectively (p < 0.001) (Fig. 1a,b). Such relationships have been commonly observed and explained by the fact that rainfall constitutes the major depositional pathway of these radionuclides (Turekian, Benninger & Dion 1983; Olsen et al., 1985). As previously observed, correlation of rainfall with ⁷Be seems better than with ²¹⁰Pb (Olsen et al., 1985), likely due to a relatively greater contribution of ²¹⁰Pb from dry deposition. Some scattering of data points along the regression line could be the result of other processes. A close examination of the diagrams shows that two categories of samples can be distinguished. In the first category are the samples

having high ²¹⁰Pb and ⁷Be activities with respect to precipitation. This category consists of precipitation events occurring in late spring and summer. Indeed, maximum ⁷Be fluxes were generally measured during the same period (Turekian et al., 1983; Olsen et al., 1985; Baskaran et al., 1993) and were attributed to an intrusion of stratospheric ⁷Be-rich air masses into the troposphere, when midlatitude folding of the tropopause enhances stratospheric-tropospheric exchange (Young, Wogman, Thomas & Perkine, 1970; Viezee and Singh, 1980; Dutkiewicz and Husain, 1985). A seasonal trend of ²¹⁰Pb was also reported and explained by the emanation of ²²²Rn from soils, which can be partly controlled by moisture (Olsen et al., 1985; Schuler et al., 1991). Warming up of frozen and snow-covered soils, as well as drying out of water-saturated soils may be of importance here, because of the abundance of high-altitude mountains in Switzerland. Tokieda et al. (1996) suggested that in spring a significant fraction of ²¹⁰Pb may originate from the higher atmosphere (probably the stratosphere) and that the deposition rate of ⁷Be is correlated with the upper atmospheric component of ²¹⁰Pb. If this is the case also at the Geneva location, a part of the enhanced deposition of ²¹⁰Pb in the summer months might be attributed to this source.

Another category of samples exhibits lower radionuclide activities than expected (filled black circles, Fig. 1). To a rough approximation, this category groups the rains which promptly followed (by about 1 day or less) a previous rain period. As shown by Fig. 1c, the relation ²¹⁰Pb vs. ⁷Be integrated activities exhibits a better correlation ($r^2 = 0.91$, p < 0.001) than precipitation vs. ²¹⁰Pb or ⁷Be. This suggests that the deposition of both radionuclides is essentially governed by the same processes, confirming the observation of Baskaran et al. (1993). Actually, the parameters independent of the amount of precipitation seem to have similar effects on deposition of both radionuclides.

4.2. Relationship between the amount of precipitation and radionuclide specific concentrations

Ishikawa, Murakami, Skine and Yoshihara (1995) modelled the ⁷Be concentrations in rain through time, C(t), by the following function:

$$C(t) = a\mathrm{e}^{-\kappa t} + b,\tag{1}$$

where a, k and b are constants, and t is time. Two different processes operate in a rainfall event. The exponential term is preponderant when t is small. It illustrates the scavenging of the radionuclides associated with the aerosols present below the clouds (washout) and dominates at the beginning of the rain. Conversely, the constant term becomes preponderant when t increases. At that time, the scavenging occurring inside the cloud during the nucleation process (rainout) governs the deposition.

In our data, the highest concentrations of ⁷Be and ²¹⁰Pb were observed for low rainfall (group A on Fig. 2(a) and (b)). With increasing precipitation, the concentrations quickly decreased to $\sim 0.1-0.3$ Bq 1⁻¹ for ²¹⁰Pb and to 1–4 Bq 1⁻¹ for ⁷Be (group B). Obviously, this behaviour cannot be directly modelled by Eq. (1) because (i) the samples represent an integrated record over all the duration of the

Table 1 Radionuclic given at the	le and majc 66% confi	or element da dence level	ata. Major elements are given with	an error of $\pm 5\%$, while error:	s of integrated acti	vities, concent	trations and $^7\mathrm{Be}/^{21}$	⁰ Pb are
Date of	Exp. ^a (dav)	Precip. ^b (mm)	²¹⁰ Pb	⁷ Be	7 Be/ ²¹⁰ Pb Cl	- (mg 1 ⁻¹)	$Na^{+} (mg \ l^{-1})$	Ca^{++}

CO I CO II CO II	(VBD)						1			
			Integrated activity (Bq m ⁻²)	Specific conc. (Bq 1 ⁻¹)	Integrated activity (Bq m ⁻²)	Specific conc. (Bq 1 ⁻¹)	l			
Nov 7, 97	4	13	2.0 ± 0.2	0.16 ± 0.02	20 ± 1	1.6 ± 0.2	10 ± 1	0.60	0.49	0.58
Nov 14, 97	7	63	6.3 ± 0.6	0.10 ± 0.01	89 ± 5	1.4 ± 0.2	14 ± 2	0.51	0.33	0.15
Nov 21, 97	7	10	2.2 ± 0.3	0.22 ± 0.03	23 ± 1	2.3 ± 0.3	10 ± 1	0.57	0.37	0.59
Dec 4, 97	13	25	2.5 ± 0.3	0.10 ± 0.02	28 ± 2	1.1 ± 0.1	12 ± 2	0.29	0.24	0.31
Dec 16, 97	12	27	3.4 ± 0.4	0.13 ± 0.02	60 ± 2	2.2 ± 0.2	18 ± 2	0.68	0.41	0.56
Dec 31, 97	15	46	3.8 ± 0.4	0.08 ± 0.01	78 ± 2	1.7 ± 0.2	20 ± 2	0.35	0.22	0.65
Jan 8, 98	8	39	6.6 ± 0.6	0.17 ± 0.02	88 ± 3	2.3 ± 0.2	13 ± 1	0.79	0.49	0.44
Jan 15, 98	7	3	1.7 ± 0.2	0.57 ± 0.10	15 ± 1	5.0 ± 0.6	9 ± 1	1.16	0.62	1.44
Jan 23, 98	8	46	2.8 ± 0.4	0.06 ± 0.01	44 ± 2	1.0 ± 0.1	16 ± 2	0.31	0.16	0.43
Feb 4, 98	12	0.2	0.7 ± 0.3	3.30 ± 1.17	2 ± 1	7 ± 1	2 ± 1	NM ^c	NM	MN
Feb 9, 98	5	0.2	0.6 ± 0.2	2.99 ± 1.07	2 ± 1	10 ± 2	4 ± 2	MN	NM	MN
Feb 24, 98	15	14	2.5 ± 0.3	0.17 ± 0.03	19 ± 1	1.3 ± 0.1	8 ± 1	0.32	0.30	0.89
Mar 3, 98	7	0.2	0.6 ± 0.2	2.79 ± 0.73	2 ± 1	9 ± 2	3 ± 2	MN	NM	MN
Mar 5, 98	0	ю	2.6 ± 0.4	0.84 ± 0.14	26 ± 1	8.3 ± 0.9	10 ± 1	0.91	0.53	1.94
Mar 10, 98	5	13	2.4 ± 0.4	0.19 ± 0.03	28 ± 1	2.2 ± 0.2	12 ± 2	0.73	0.47	0.38
Mar 16, 98	9	5	1.3 ± 0.3	0.25 ± 0.07	9 ± 1	1.7 ± 0.2	7 ± 2	0.22	0.14	0.81
Apr 6, 98	21	31	5.8 ± 0.5	0.19 ± 0.02	66 ± 3	2.2 ± 0.2	11 ± 1	0.24	0.29	0.91
Apr 9, 98	б	18	1.6 ± 0.2	0.09 ± 0.02	40 ± 3	2.2 ± 0.3	26 ± 4	0.11	0.08	0.25
Apr 20, 98	11	50	4.3 ± 0.6	0.09 ± 0.01	83 ± 5	1.7 ± 0.2	19 ± 3	0.22	0.13	0.26
Apr 21, 98	1	1	0.5 ± 0.1	0.48 ± 0.09	6 ± 1	5.5 ± 0.7	12 ± 2	0.94	0.52	1.48
Apr 29, 98	8	16	3.4 ± 0.3	0.22 ± 0.03	41 ± 2	2.7 ± 0.3	12 ± 1	0.29	0.19	0.59
May 7, 98	8	9	0.7 ± 0.1	0.13 ± 0.02	6 ± 1	1.2 ± 0.2	9 ± 2	1.06	0.65	0.81
May 29, 98	22	18	3.4 ± 0.4	0.18 ± 0.03	35 ± 2	1.9 ± 0.2	10 ± 2	0.64	0.47	0.62
Jun 2, 98	4	7	0.9 ± 0.2	0.44 ± 0.09	9 ± 1	4.1 ± 0.5	9 ± 2	0.82	0.42	1.71
Jun 5, 98	Э	19	5.5 ± 0.6	0.29 ± 0.05	79 ± 4	4.2 ± 0.5	14 ± 2	0.43	0.28	0.62
Jun 8, 98	б	7	1.6 ± 0.2	0.23 ± 0.03	25 ± 1	3.6 ± 0.4	16 ± 2	0.40	0.40	0.98

Inn 13 98	Ŷ	36	50+0.6	0.14 ± 0.02	05 + 7	27 ± 0.3	10 + 3	0.56	0.40	0.45
Jun 17, 98	0 4) œ	1.2 ± 0.1	0.14 ± 0.02	25 + 1	3.0 ± 0.3	22 + 3	0.97	0.53	0.64
Jul 6, 98	19	56	13 ± 2	0.22 ± 0.03	180 ± 10	3.1 ± 0.4	14 ± 2	0.26	0.30	0.89
Jul 9, 98	ю	12	2.7 ± 0.3	0.24 ± 0.04	42 ± 2	3.6 ± 0.4	15 ± 2	0.18	0.17	0.97
Jul 14, 98	5	4	2.0 ± 0.2	0.45 ± 0.07	26 ± 1	5.8 ± 0.6	13 ± 2	0.64	0.58	1.49
Aug 4, 98	21	34	9.7 ± 0.9	0.29 ± 0.04	150 ± 7	4.4 ± 0.5	16 ± 2	0.31	0.34	1.05
Aug 13, 98	6	7	5.1 ± 0.5	0.77 ± 0.11	50 ± 3	7.6 ± 0.9	10 ± 1	0.60	0.35	1.89
Aug 26, 98	13	10	4.6 ± 0.5	0.47 ± 0.07	45 ± 2	4.6 ± 0.5	10 ± 1	0.68	0.62	1.05
Sep 4, 98	6	4	2.2 ± 0.2	0.52 ± 0.08	19 ± 1	4.3 ± 0.5	8 ± 1	0.89	0.59	2.48
Sep 7, 98	б	54	4.0 ± 0.5	0.07 ± 0.01	67 ± 3	1.2 ± 0.1	17 ± 2	0.34	0.21	0.23
Sep 15, 98	8	66	9.8 ± 1.0	0.15 ± 0.02	118 ± 5	1.8 ± 0.2	12 ± 1	0.27	0.21	0.24
Sep 18, 98	б	5	0.5 ± 0.1	0.10 ± 0.02	8 ± 1	1.5 ± 0.2	14 ± 3	0.48	0.39	0.27
Sep 29, 98	11	21	4.3 ± 0.5	0.20 ± 0.03	66 ± 5	3.1 ± 0.4	15 ± 2	0.35	0.27	0.45
Oct 1, 98	7	30	1.7 ± 0.2	0.06 ± 0.01	28 ± 1	0.9 ± 0.1	16 ± 2	0.21	0.14	0.17
Oct 5, 98	4	16	1.8 ± 0.2	0.11 ± 0.02	34 ± 3	2.1 ± 0.3	19 ± 3	0.23	0.12	0.12
Oct 8, 98	ŝ	18	1.8 ± 0.2	0.10 ± 0.02	36 ± 2	2.0 ± 0.2	20 ± 3	0.08	0.07	0.09
Oct 13, 98	5	5	1.0 ± 0.2	0.19 ± 0.04	13 ± 1	2.5 ± 0.3	13 ± 3	0.54	0.24	0.49
Oct 20, 98	7	10	1.0 ± 0.1	0.10 ± 0.02	15 ± 1	1.5 ± 0.2	14 ± 2	0.07	0.11	0.48
Oct 27, 98	7	53	6.0 ± 0.7	0.12 ± 0.02	92 ± 7	1.8 ± 0.2	15 ± 2	0.51	0.35	0.13
Nov 2, 98	9	41	3.6 ± 0.4	0.09 ± 0.01	63 ± 3	1.5 ± 0.2	18 ± 2	0.57	0.44	0.21

^a exposure time. ^b precipitation (error $\pm 10\%$). ^cNM: not measured.

Fig. 1. (a) Precipitation vs. ²¹⁰Pb integrated activities, (b) precipitation vs. ⁷Be integrated activities and (c) ²¹⁰Pb integrated activities vs. ⁷Be integrated activities for 46 individual rain events. Black filled circles: rain events for which the delay between the sampled event and the preceding rain did not exceed one day; grey filled circles: rain events sampled between early June and August; and open circles: remaining events.

rain and, (ii) they include dry fallout. Nonetheless, the high concentrations observed in low rainfall (group A) likely illustrate the preponderance of washout and/or possibly a significant contribution of dry deposition. With heavier rainfall, the lower atmosphere is quickly washed and the relative importance of washout against rainout becomes negligible (group B). The range of ²¹⁰Pb and ⁷Be concentrations is then narrower, despite some variations which will be discussed later.

²¹⁰Pb and ⁷Be concentrations are plotted against each other in Fig. 3. Most of the samples belonging to group B fall on a line which defines a ${}^{7}\text{Be}/{}^{210}\text{Pb}$ ratio of about 13.5. No significant seasonal variations in the ${}^{7}\text{Be}/{}^{210}\text{Pb}$ ratios were found, despite

Fig. 2. (a) Magnitude of precipitation vs. ²¹⁰Pb concentrations and (b) magnitude of precipitation vs. ⁷Be concentrations for 46 individual rain events. Highest concentrations for low rainfall (group A); with increasing precipitation, the concentrations quickly decrease (group B).

Fig. 3. ²¹⁰Pb concentrations vs. ⁷Be concentrations for 46 individual rain events. The regression line (⁷Be = 13.5^{210} Pb) has been computed from samples belonging to group B (high rainfall). The grey arrow indicates the deviation (to an enrichment of ²¹⁰Pb) when the precipitation is lower.

an increase of concentrations of both radioisotopes in late spring and summer. When the precipitation becomes lower, an enrichment of ²¹⁰Pb is observed (grey arrow on Fig. 3). This is particularly evident for the lowest precipitation (<1 mm), which show ⁷Be/²¹⁰Pb ratios of about 3. This behaviour may be interpreted as a relatively important contribution of ²¹⁰Pb-rich, soil-derived particles, because not all samples were measured for their ²¹⁰Po/²¹⁰Pb ratios. Moreover, the washout and dry deposition could proportionally remove more ²¹⁰Pb than ⁷Be because of a difference in their vertical distributions in the lower atmosphere (Moore, Poet & Martell, 1973; Talpos and Cuculeanu, 1997).

4.3. Model of ²¹⁰Pb and ⁷Be deposition

Based on the above relationships, we have attempted to model the radionuclide fallout during a single event as a function of the amount of precipitation, season and elapsed time between two rain events. The same depositional processes can reasonably be assumed for both ⁷Be and ²¹⁰Pb, although differences between the nuclides have been identified at the lowest levels of precipitation. Nonetheless, these do not play any significant role in terms of flux. As illustrated by Fig. 1(a) and (b), most of the variance of ⁷Be and ²¹⁰Pb deposition is due to the amount of precipitation and can be expressed by a linear law proposed by Ishikawa et al. (1995) and derived from Eq. (1)

$$A_i(P) = a_i + b_i P, \tag{2}$$

where $A_i(P)$ is the activity of radionuclide *i* deposited per m² during the exposure time, and *P* is the amount of precipitation. In this relation, $A_i(P)$ is the result of a linear combination of a term proportional to the precipitation (b_iP) , which expresses the rainout, and an independent term (a_i) . This latter represents the contribution of washout and dry deposition; however, a contribution, even minor, by soil-derived particles cannot be totally excluded. It is reasonable to assume that the coefficients a_i and b_i depend on the radionuclide inputs in the atmosphere.

Therefore, a_i and b_i are affected by the seasonal variability and the reload process of the atmosphere. This can be expressed by the following equations:

$$a_i = f_{\mathrm{Si}} f_{\mathrm{Ri}} a_{0i}, \tag{3}$$

$$b_i = f_{\mathrm{Si}} f_{\mathrm{Ri}} b_{0i}, \tag{4}$$

where f_{Si} is a function which describes the seasonal variability, f_{Ri} illustrates the reload process, whereas a_{0i} and b_{0i} are constants, for the radionuclide *i*. As suggested by the concentration data, a step function (f_{Si}) was used:

$$f_{\rm Si} = \begin{cases} d_i & \text{in June, July and August,} \\ 1 & \text{otherwise,} \end{cases}$$
(5)

where the input of nuclide i in the atmosphere is d_i times higher in June, July and August.

A Lagrangian model has been used to describe the reload process. We have assumed that the local atmosphere is uniformly mixed and the meteorological situation is representative of air masses on a large scale. The radionuclides are supposed to be completely scavenged after a rain event and the reload is approximated by an exponential function f_{Ri} :

$$f_{\rm Ri} = (1 - e^{-k_i t}),$$
 (6)

where t is the time which separates two rain events and k_i is the reload rate.

Although the reload concept is somewhat intuitive, it can be compared to a reload of the atmosphere with aerosol particles as described by Bergametti, Dutot, Buat-Menard, Lasno and Remoudaki (1989). Both large and local scale processes can be involved here. As inferred from backward air mass trajectories, most of the meteorological fronts bringing precipitation to Geneva come from the west, 'cleaning' the atmosphere from radionuclides over considerable distances. If two precipitation events closely follow one another, the advective transport of air masses may be not fast enough to completely recharge the atmosphere on the same trajectory. On the local scale, Geneva is surrounded by the Jura mountains and the Alps, with periodically stagnant air masses (temperature inversion) which may slow down the recharge of the lower troposphere by advective transport, resulting in a lower radionuclide inventory being available for washout when the time between two rain events is short.

From all the above, the activity of radionuclide $i(A_i)$ deposited per m² during the exposure time is given by:

$$A_{i} = \begin{cases} d_{i}(1 - e^{-k_{i}t})(a_{0i} + b_{0i}P) & \text{in June, July and August,} \\ (1 - e^{-k_{i}t})(a_{0i} + b_{0i}P) & \text{otherwise,} \end{cases}$$
(7)

Multiple regressions have been computed for ²¹⁰Pb and ⁷Be data. The resulting values of the coefficients are reported in Table 2. Both seasonal and reload functions were significant at more than 99.9% according to a Fisher *F*-test. The activities calculated by the model for ⁷Be and ²¹⁰Pb were very similar to the measured values, as shown in the Fig. 4(c) and (d). Regression coefficients ($r^2 = 0.86$ for ²¹⁰Pb, and $r^2 = 0.92$ for ⁷Be, Fig. 4(c) and (d) were much better than those calculated when only the precipitation was included ($r^2 = 0.55$ for ²¹⁰Pb and 0.66 for ⁷Be, Fig. 4(a) and (b). A greater part of the variance is thus explained by considering the seasonal and reload functions. Moreover, such high coefficients close to unity undoubtedly argue in favour of the mathematical formulations chosen to model the natural processes which enrich or deplete the atmosphere.

The values of *d* indicate an increase by $68 \pm 9\%$ and $80 \pm 9\%$ of the ²¹⁰Pb and ⁷Be inputs, respectively, in June, July and August. The synchronicity and these similar amplitudes of the increases for both radionuclides are maybe fortuitous. As a matter of fact, if the increase of the ⁷Be concentration is generally observed worldwide at the same latitudes, it is evident that the concentration of ²¹⁰Pb is highly dependent on climate, geographical situation and the nature of the underlying rocks. As a

Table 2

Coefficients d, k, a_0 and b_0 determined by multiple regressions. Errors are given at the 66% confidence level

	d	$k (d^{-1})$	$a_0 (\text{Bq m}^{-2})$	$b_0 (\text{Bq } 1^{-1})$
²¹⁰ Pb ⁷ Be	$\begin{array}{c} 1.68 \pm 0.09 \\ 1.80 \pm 0.08 \end{array}$	$\begin{array}{c} 0.80 \pm 0.08 \\ 0.96 \pm 0.10 \end{array}$	$\begin{array}{c} 0.9\pm0.1\\ 6.3\pm1.1 \end{array}$	$\begin{array}{c} 0.12 \pm 0.01 \\ 1.74 \pm 0.06 \end{array}$

Fig. 4. Measured vs. integrated activities calculated with a linear model taking into account the precipitation alone (Eq. (2)) for 210 Pb (a) and for 7 Be (b); and with a model where both seasonal and reload process are also included for 210 Pb (c) and for 7 Be (d). Black filled circles: rain events for which the delay between the sampled event and the preceding rain did not exceed one day; grey filled circles: rain events sampled between early June and August; and open circles: remaining events.

consequence, what is true in the region of Geneva may be quite different in other parts of the world. Nevertheless, the simultaneous enhancement of ²¹⁰Pb and ⁷Be from the upper troposphere and from the stratosphere in spring is also possible (Tokieda et al., 1996).

The parameter k allows us roughly to assess the mean time necessary to reload the atmosphere with radioisotopes $(t_r = 1/k)$. Values of 1.2 ± 0.1 day and 1.0 ± 0.1 day are calculated for ²¹⁰Pb and ⁷Be, respectively. As the production rate and the origin

of both elements are quite different, it is impossible to invoke a common reload process governed by emissions alone. The local atmosphere would rather be reloaded by a rapid mixing with surrounding air masses. In this case, it is normal to find very similar ²¹⁰Pb and ⁷Be (and other element) reload times. This is in good agreement with the average reload time of 2 days for aerosol particles from continental sources (Bergametti et al., 1989).

The constant a_{0i} corresponds to the contribution from washout and dry deposition in a rain event not affected by seasonal variability or partial reload. By extrapolation over the whole year, this contribution represented $27 \pm 3\%$ and $16 \pm 3\%$ of the total deposition of ²¹⁰Pb and ⁷Be, respectively. This is consistent with the fact that washout and dry deposition are more important for ²¹⁰Pb than for ⁷Be.

Finally, b_{0i} gives an estimation of the mean ²¹⁰Pb and ⁷Be concentrations in a rain event dominated by the rainout process and is not affected by seasonal variability or by partial reload.

4.4. ⁷Be, ²¹⁰Pb and origin of air masses

Two tools were used to assess the origin of air masses: backward trajectory via meteorological observations and more indirectly the measurement of major element concentrations (Cl^- , Na^+ and Ca^{++}). In the following, the samples largely dominated by the washout mechanism (group A as defined in Fig. 2) should be dropped because their high concentrations are not related to long-distance transport of air masses.

When Ca^{++} and ²¹⁰Pb concentrations are plotted vs. the duration of air mass travel over the continent (Fig. 5), two groups of samples are distinguished. The first

Fig. 5. Duration of air mass travel over continent vs. Ca^{++} (a) and vs. ^{210}Pb (b) concentrations. Rain events largely dominated by washout (group A in Fig. 2) are excluded. Black filled circles: rain events for which the delay between the sampled event and the preceding rain did not exceed one day, and open circles: the others.

one presents an evident correlation $(r^2 = 0.61$ for Ca⁺⁺ and $r^2 = 0.50$ for ²¹⁰Pb), suggesting that Ca⁺⁺ and ²¹⁰Pb are progressively incorporated into the air masses during travel over the continent. The second group is characterised by low Ca⁺⁺ and ²¹⁰Pb concentrations, independently of the travel duration. These latter samples correspond to the events which quickly followed past rain events (one day or less), as defined above. As a result, ²¹⁰Pb and Ca⁺⁺ concentrations show a fair correlation $(r^2 = 0.51)$. Both elements originally come from soil and they seem to behave similarly in regard to the incorporation, transportation and fallout mechanisms from the atmosphere. Although systematically measured, the Na⁺ and Cl⁻ concentrations, which can potentially be used as indicators of oceanic influence, did not exhibit inverse correlation with the ²¹⁰Pb concentrations, although this nuclide is essentially of continental origin. The maritime signal is possibly too weak and/or perturbed by local sources. ⁷Be concentrations (not shown) appeared much less dependent on the air-mass travel time $(r^2 = 0.22)$ than Ca⁺⁺ and ²¹⁰Pb since it is not preferentially incorporated in the air masses over the continents.

5. Conclusions

Mean fluxes of 150 ± 3 Bq m⁻² y⁻¹ and 2087 ± 23 Bq m⁻² y⁻¹ were measured for ²¹⁰Pb and ⁷Be, respectively. An examination of the individual rain event allowed definition of the main removal processes with respect to the amount of precipitation. Despite their different origins, the deposition of both radionuclides is essentially governed by the same processes. The high ²¹⁰Pb and ⁷Be specific concentrations observed at low rainfall illustrate the preponderance of washout and/or a significant contribution of dry deposition. With heavier rainfall, the lower atmosphere is quickly washed out and the rainout process dominates.

From these findings, a simple depositional model was developed. It takes into account the amount of precipitation, the season and the elapsed time between two rain events. Accounting for 60% of the flux variance, the amount of precipitation is the main factor. From the end of spring and during summer, the concentrations of both radionuclides in the rain increase by 70–80%. This is ascribed to intrusion of stratospheric air masses into the troposphere and to a greater emanation of 222 Rn from snow-free and dry soils. After a rain event, the mean reload time of the atmosphere for both radionuclides was estimated at 1–2 days. The model describes the atmospheric fluxes fairly well by explaining about 90% of the variance during the sampling period.

The inter-relationship between air mass trajectories and the concentrations of ²¹⁰Pb and Ca⁺⁺ illustrates the common continental origin of these elements. Given its cosmogenic origin, ⁷Be does not show any particular trend compared to the major element concentrations and the trajectories.

Acknowledgements

The authors wish to thank their colleagues at the Institut F.-A. Forel (Dr. J.-L. Loizeau, Prof. R.L. Thomas) for useful suggestions and discussions and for advice

and critical review of the manuscript, Dr. A.-C. Letestu (SMI) for access to meteorological data and calculation of air mass trajectories, Dr. P. Steinmann (Department of Geology, University of Neuchâtel), Dr. M. Martin and M. Pelletier (Department of Analytical and Mineral Chemistry, University of Geneva) for IC, ICP-MS, and AAS analysis.

This research was supported by the Swiss National Science Foundation (Grant No. 2000–050796.97).

References

- Baskaran, M., Coleman, C. H., & Santschi, P. H. (1993). Atmospheric depositional fluxes of ⁷Be and ²¹⁰Pb at Galveston and College Station, Texas. *Journal of Geophysical Research*, 98(D11), 20555–20571.
- Bergametti, G., Dutot, A. -L., Buat-Ménard, P., Losno, R., & Remoudaki, E. (1989). Seasonal variability of the elemental composition of atmospheric aerosol particles over the northwestern Mediterranean. *Tellus*, 41B, 353–361.
- Bleichrodt, J. F. (1978). Mean tropospheric residence time of cosmic-ray-produced beryllium-7 at north temperate latitudes. *Journal of Geophysical Research*, 83, 3058–3062.
- Brost, R. A., Fleicher, J., & Heimann, M. (1991). Three-dimensional simulation of ⁷Be in a global climate model. *Journal of Geophysical Research*, 96, 22423–22445.
- Dominik, J., Schuler, C., & Santchi, P. H. (1987). Transport of environmental radionuclides in an alpine watershed. *Earth and Planetary Science Letters*, 84, 165–180.
- Durana, L., Chudy, M., & Masarik, J. (1996). Investigation of Be-7 in the Bratislava atmosphere. *Journal of Radioanalytical Nuclear Chemistry*, 207, 345–356.
- Dutkiewicz, V. A., & Husain, L. (1985). Stratospheric and tropospheric component of ⁷Be in surface air. *Journal of Geophysical Research*, 90(D3), 5783–5788.
- Ishikawa, Y., Murakami, H., Skine, T., & Yoshihara, K. (1995). Precipitation scavenging studies of radionuclides in air using cosmogenic ⁷Be. Journal of Environmental Radioactivity, 26, 19–35.
- Koch, D. M., & Mann, M. E. (1996). Spatial and temporal variability of ⁷Be surface concentrations. *Tellus*, 48B, 387–396.
- Moore, H. E., Poet, S. E., & Martell, E. A. (1973). ²²²Rn, ²¹⁰Pb, ²¹⁰Bi and ²¹⁰Po profiles and aerosol residence times versus altitude. *Journal of Geophysical Research*, 78, 7065–7075.
- Olsen, C. R., Larsen, I. L., Lowry, P. D., Cutshall, N. H., Todd, J. F., Wong, G. T. F., & Casey, W. H. (1985). Atmospheric fluxes and marsh-soil inventories of ⁷Be and ²¹⁰Pb. *Journal of Geophysical Research*, 90(D6), 10487–10495.
- Preiss, N., Mélières, M. -A., & Pourchet, M. (1996). A compilation of data on lead-210 concentration in surface air and fluxes at the air-surface and water-sediment interfaces. *Journal of Geophysical Research*, 101, 28847–28862.
- Robbins, J. A. (1978). Geochemical and geophysical applications or radioactive lead. In J. O. Nriagu, *The biogeochemistry of lead in the environment* (pp. 285–393). Amsterdam: Elsevier.
- Schuler, C., Wieland, E., Santschi, P. H., Sturm, M., Lueck, A., Bollhalder, S., Beer, J., Bonani, G., Hofmann, H. J., Suter, M., & Wolfi, W. (1991). A Multitracer of radionuclides in Lake Zurich, Switzerland. 1. Comparison of atmospheric and sedimentary fluxes of ⁷Be, ¹⁰Be, ²¹⁰Pb, ²¹⁰Po, and ¹³⁷Cs. *Journal of Geophysical Research*, 96(C9), 17051–17065.
- Talpos, S., & Cuculeanu, V. (1997). A study of the vertical diffusion of ⁷Be in the atmosphere. *Journal of Environmental Radioactivity*, 36(1), 93–106.
- Thompson, J., & Turekian, K. K. (1976). ²¹⁰Po and ²¹⁰Pb distribution in ocean water profiles from the eastern South Pacific. *Earth and Planetary Science Letters*, 32, 297–303.
- Tokieda, T., Yamanaka, K., Harada, K., & Tsunogai, S. (1996). Seasonal variations of residence time and upper atmospheric contribution of aerosols studied with Pb-210, Bi-210, Po-210 and Be-7. *Tellus*, *48B*, 690–702.

- Turekian, K. K., Benninger, L. K., & Dion, E. P. (1983). ⁷Be and ²¹⁰Pb total deposition fluxes at New Haven Connecticut and at Bermuda. *Journal of Geophysical Research*, 88(C9), 5411–5415.
- Viezee, W., & Singh, H. B. (1980). The distribution of ⁷Be in the troposphere: implication on stratospheric/ tropospheric air exchange. *Geophysical Research Letters*, 7(10), 805–808.
- Vogler, S., Jung, M., & Mangini, A. (1996). Scavenging of ²³⁴Th and ⁷Be in Lake Constance. *Limnology and Oceanography*, 41(7), 1384–1393.
- Young, J. A., Wogman, N. A., Thomas, C. W., & Perkins, R. W. (1970). Short-lived cosmic ray-produced radionuclides as tracers of atmosphere processes. Radionuclides in the environment. *Advances in Chemistry Series*, 93, 506–521.