Wild brown trout affected by historical mining in the Cévennes

National Park, France.

F. MONNA^{1,*}, E. CAMIZULI¹, P. REVELLI², C. BIVILLE¹, C. THOMAS¹, R. LOSNO³, R. SCHEIFLER⁴, O. BRUGUIER⁵, S. BARON⁶, C. CHATEAU⁷, A. PLOQUIN⁸, P. ALIBERT⁹

1: UMR 5594, ARTéHIS, Université de Bourgogne – CNRS-culture, Boulevard Gabriel, Bat. Gabriel, F-21000 Dijon, France;

2: Laboratoire Départemental d'Analyses Vétérinaires de la Savoie, 321, chemin des Moulins, BP 1113, F-73011 Chambery Cedex

3: UMR 7583, LISA, Universités Paris 7-Paris 12 – CNRS, Faculté des Sciences, 61 av. du Gal de Gaulle F-94010 Créteil Cedex, France.

4 : UMR 6249, Laboratoire Chrono-Environnement, Université de Franche-Comté - CNRS, 16 route de Gray F-25030 Besançon Cedex, France.

5 : UMR 5243, Géosciences Montpellier, Université Montpellier 2 – CNRS, cc 60, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France.

6: UMR 5608, TRACES, Université Toulouse 2-le Mirail – CNRS, Maison de la recherche, Bat. 26, 5 allée A. Machado, F-31058 Toulouse Cedex, France.

7 : Université de Bourgogne, UFR Sciences de la Vie, de la Terre et de l'Environnement, Bat. Gabriel, F-21000 Dijon, France

8 : UPR 2300, Centre de Recherches Pétrographiques et Géochimiques, Université de Nancy – CNRS, 15 rue Notre-Dame-des-Pauvres, F-54501 Vandoeuvre-lès-Nancy, France

9: UMR 5561, Biogeosciences, Université de Bourgogne – CNRS, Bat. Gabriel, F-21000 Dijon, France,

*: corresponding author, phone: +33 (0)3 80 396 360, fax: +33 (0)3 80 396 387 e-mail: <u>Fabrice.Monna@u-bourgogne.fr</u>

Contents

Number of pages: 17

Number of tables: 12

Number of figures: 3

Supporting Information

Supporting Information S1

Extended details for morphometrics

Four bilateral morphometric traits were selected for FA determination: length of pectoral fins, length of pelvic fins, distance between snout and the anterior edge of the eye, distance between the posterior edge of the eye and the posterior edge of the operculum. All measurements were performed twice. Since a number of factors such as the presence of other forms of asymmetry, allometry or measurement error can lead to a biased estimation of FA,¹ a series of preliminary tests were conducted for all traits. These tests were performed for each sample on the distributions of either signed asymmetries (right-minus-left values [Ri-Li]) or absolute asymmetries (|Ri-Li|) of the four traits. Directional asymmetry (DA) and antisymmetry (AS) occur when one side of a bilateral character is consistently larger than the other but, in the case of AS, the side that is larger varies at random among individuals.¹ DA and AS were tested with conventional methods.² Absolute asymmetry values were also used to test for the presence of allometry by linear regression on character size defined as ([Ri+Li]/2). As numerous tests were repeatedly conducted on the four traits, the sequential Bonferroni test³ was systematically applied (across the series of k=4 tests) in order to limit the occurrence of type-I error.

Finally, a two-way mixed model ANOVA (side-fixed \times individual-random) was performed with repeated measurements on each side^{2,4}. This approach, in addition to testing for DA, allows the measurement error variance to be partitioned out from the non-directional asymmetry variance.

Population FA levels were estimated for all traits using the means of the absolute asymmetry distributions (so-called index FA1)², as well as the variance component corresponding to the true between-sides variance obtained by partitioning measurement error out of the sides x individual mean squares of the two-way ANOVA results (so-called index FA10). Differences between samples were tested using ANOVA for FA1 and F-ratio for FA10.²

					сос						сом						CUB		
		df	MS	F	р	FA10	df(FA10)	df	MS	F	р	FA10 df	(FA10)	df	MS	F	р	FA10	df(FA10)
1	side	1	2.8E-03	0.05	0.83			1	0.1	0.12	0.73			1	1.0E-03	2.8E-03	0.96		
orc gth	individual	19	171.2	3034.7	3.9E-29			19	127.2	156.82	5.9E-17			17	51.5	145.0	4.8E-15		
len	interaction	19	0.1	16.4	2.9E-13	0.03	16.7	19	0.8	74.87	2.5E-25	0.40	18.5	17	0.4	16.7	3.2E-12	0.17	15.0
	Meas. Error	40	3.4E-03					40	1.1E-02					36	2.1E-02				
	side	1	2.4E-03	0.04	0.84			1	0.8	1.19	0.29			1	4.8E-02	0.21	0.65		
lvic gth	individual	19	108.8	1876.3	3.8E-27			19	65.5	97.88	4.9E-15			17	34.5	150.3	3.5E-15		
Pe	interaction	19	0.1	11.0	1.7E-10	0.03	15.6	19	0.7	88.25	1.0E-26	0.33	18.6	17	0.2	9.3	1.5E-08	0.10	13.4
	Meas. Error	40	5.3E-03					40	7.6E-03					36	2.5E-02				
sə	side	1	9.4E-03	0.19	0.67			1	0.3	0.28	0.60			1	2.5E-02	0.09	0.77		
t-E)	individual	19	25.6	522.0	7.0E-22			19	38.5	34.10	7.9E-11			17	2.2	8.1	4.0E-05		
nou	interaction	19	4.9E-02	13.7	5.3E-12	0.02	16.3	19	1.1	149.43	0.0E+00	0.56	18.7	17	0.3	16.2	4.8E-12	0.13	14.9
Sr	Meas. Error	40	3.6E-03					40	7.6E-03					36	1.7E-02				
E E	side	1	0.2	3.61	0.07			1	0.9	2.46	0.13			1	0.1	0.94	0.35		
-se-	individual	19	153.5	3304.8	1.7E-29			19	105.7	274.31	3.1E-19			17	19.4	132.9	9.9E-15		
Ey Open	interaction	19	4.6E-02	9.1	3.4E-09	0.02	14.9	19	0.4	60.23	1.6E-23	0.19	18.4	17	0.1	4.3	1.2E-04	0.06	9.7
	Meas. Error	40	5.1E-03					40	6.4E-03					36	3.4E-02				
		i									~			ı					1
				-	PDP	5440	1((5140))			_	RAM	5440 10	(5440)			-	VER	5440	1((5140))
		df	MS	F	PDP p	FA10	df(FA10)	df	MS	F	RAM p	FA10 df	(FA10)	df	MS	F	VER p	FA10	df(FA10)
al h	side	df 1	MS 0.1	F0.17	PDP p 0.69	FA10	df(FA10)	df 1	MS 0.6	F 2.6	RAM p 0.13	FA10 df	(FA10)	df 1	MS 0.0	F 0.07	VER p 0.80	FA10	df(FA10)
ctoral ngth	side individual	df 1 19	MS 0.1 74.5	F 0.17 214.8	PDP p 0.69 3.1E-18	FA10	df(FA10)	df 1 15	MS 0.6 54.9	F 2.6 253.6	RAM p 0.13 2.9E-15	FA10 df	(FA10)	df 1 11	MS 0.0 65.9	F 0.07 626.3	VER p 0.80 9.8E-14	FA10	df(FA10)
Pectoral length	side individual interaction	df 1 19 19	MS 0.1 74.5 0.3	F 0.17 214.8 36.1	PDP p 0.69 3.1E-18 2.4E-19	FA10 0.17	<u>df(FA10)</u> 18.0	df 1 15 15	MS 0.6 54.9 0.2	F 2.6 253.6 37.7	RAM p 0.13 2.9E-15 4.5E-16	FA10 df	(FA10) 14.2	df 1 11 11	MS 0.0 65.9 0.1	F 0.07 626.3 8.8	VER p 0.80 9.8E-14 5.3E-06	FA10 0.05	df(FA10) 8.6
Pectoral length	side individual interaction Meas. Error	df 1 19 19 40	MS 0.1 74.5 0.3 9.6E-03	F 0.17 214.8 36.1	PDP p 0.69 3.1E-18 2.4E-19	FA10 0.17	<u>df(FA10)</u> 18.0	df 1 15 15 32	MS 0.6 54.9 0.2 5.7E-03	F 2.6 253.6 37.7	RAM p 0.13 2.9E-15 4.5E-16	FA10 df	(FA10) 14.2	df 1 11 11 24	MS 0.0 65.9 0.1 1.2E-02	F 0.07 626.3 8.8	VER p 0.80 9.8E-14 5.3E-06	FA10 0.05	df(FA10) 8.6
c Pectoral h length	side individual interaction Meas. Error side	df 1 19 19 40 1	MS 0.1 74.5 0.3 9.6E-03 0.2	F 0.17 214.8 36.1 0.43	PDP p 0.69 3.1E-18 2.4E-19 0.52 0.52	FA10 0.17	df(FA10) 18.0	df 15 15 32 1	MS 0.6 54.9 0.2 5.7E-03 0.3	F 2.6 253.6 37.7 0.60	RAM p 0.13 2.9E-15 4.5E-16 0.45	FA10 df	(FA10) 14.2	df 11 11 24 1	MS 0.0 65.9 0.1 1.2E-02 0.2	F 0.07 626.3 8.8 2.4	VER p 0.80 9.8E-14 5.3E-06 0.15	FA10 0.05	df(FA10) 8.6
elvic Pectoral ngth length	side individual interaction Meas. Error side individual	df 19 19 40 1 19	MS 0.1 74.5 0.3 9.6E-03 0.2 55.7	F 0.17 214.8 36.1 0.43 123.3 21.7	PDP p 3.1E-18 2.4E-19 0.52 5.7E-16	FA10 0.17	df(FA10) 18.0	df 15 15 32 1 15	MS 0.6 54.9 0.2 5.7E-03 0.3 31.1	F 2.6 253.6 37.7 0.60 66.8	RAM p 0.13 2.9E-15 4.5E-16 0.45 5.6E-11	FA10 df	(FA10) 14.2	df 11 11 24 1 11	MS 0.0 65.9 0.1 1.2E-02 0.2 22.1	F 0.07 626.3 8.8 2.4 347.9	VER p 0.80 9.8E-14 5.3E-06 0.15 2.5E-12	0.05	df(FA10) 8.6
Pelvic Pectoral length length	side individual interaction Meas. Error side individual interaction	df 1 19 19 40 1 19 19	MS 0.1 74.5 0.3 9.6E-03 0.2 55.7 0.5	F 0.17 214.8 36.1 0.43 123.3 21.7	PDP p 3.1E-18 2.4E-19 0.52 5.7E-16 2.3E-15	FA10 0.17 0.22	df(FA10) 18.0 17.3	df 1 15 32 1 15 15	MS 0.6 54.9 0.2 5.7E-03 0.3 31.1 0.5	F 2.6 253.6 37.7 0.60 66.8 68.9	RAM p 0.13 2.9E-15 4.5E-16 0.45 5.6E-11 5.0E-20	FA10 dfi 0.11 0.23	(FA10) 14.2 14.6	df 11 11 24 11 11	MS 0.0 65.9 0.1 1.2E-02 0.2 22.1 0.1	F 0.07 626.3 8.8 2.4 347.9 2.9	VER p 0.80 9.8E-14 5.3E-06 0.15 2.5E-12 1.4E-02	0.05	df(FA10) 8.6 4.5
Pelvic Pectoral length length	side individual interaction Meas. Error side individual interaction Meas. Error	df 1 19 19 40 1 19 19 19 40	MS 0.1 74.5 0.3 9.6E-03 0.2 55.7 0.5 2.1E-02	F 0.17 214.8 36.1 0.43 123.3 21.7	PDP p 0.69 3.1E-18 2.4E-19 0.52 5.7E-16 2.3E-15	FA10 0.17 0.22	df(FA10) 18.0 17.3	df 1 15 15 32 15 15 32	MS 0.6 54.9 0.2 5.7E-03 0.3 31.1 0.5 6.8E-03	F 2.6 253.6 37.7 0.60 66.8 68.9	RAM p 0.13 2.9E-15 4.5E-16 0.45 5.6E-11 5.0E-20	0.11 0.23	(FA10) 14.2 14.6	df 1 11 24 1 11 11 24	MS 0.0 65.9 0.1 1.2E-02 0.2 22.1 0.1 2.2E-02	F 0.07 626.3 8.8 2.4 347.9 2.9	VER p 0.80 9.8E-14 5.3E-06 0.15 2.5E-12 1.4E-02	0.05	df(FA10) 8.6 4.5
⁻ yes Pelvic Pectoral length length	side individual interaction Meas. Error side individual interaction Meas. Error side isdeidual	df 1 19 19 40 1 19 19 40 1	MS 0.1 74.5 0.3 9.6E-03 0.2 55.7 0.5 2.1E-02 0.1 24.5	F 0.17 214.8 36.1 0.43 123.3 21.7 0.16	PDP p 0.69 3.1E-18 2.4E-19 0.52 5.7E-16 2.3E-15 0.69	FA10 0.17 0.22	df(FA10) 18.0 17.3	df 15 15 32 15 15 32 15 32	MS 0.6 54.9 0.2 5.7E-03 0.3 31.1 0.5 6.8E-03 0.2	F 2.6 253.6 37.7 0.60 66.8 68.9 1.2	RAM p 0.13 2.9E-15 4.5E-16 0.45 5.6E-11 5.0E-20 0.29 1.75 12	FA10 dfi 0.11 0.23	(FA10) 14.2 14.6	df 1 11 11 24 11 11 24 1	MS 0.0 65.9 0.1 1.2E-02 0.2 22.1 0.1 2.2E-02 1.4	F 0.07 626.3 8.8 2.4 347.9 2.9 5.7	VER p 0.80 9.8E-14 5.3E-06 0.15 2.5E-12 1.4E-02 0.04	0.05	df(FA10) 8.6 4.5
ut-Eyes Pelvic Pectoral length length	side individual interaction Meas. Error side individual interaction Meas. Error side individual	df 1 19 40 1 19 40 19 40 1 19	MS 0.1 74.5 0.3 9.6E-03 0.2 55.7 0.5 2.1E-02 0.1 24.5 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	F 0.17 214.8 36.1 0.43 123.3 21.7 0.16 77.5	PDP p 0.69 3.1E-18 2.4E-19 0.52 5.7E-16 2.3E-15 0.69 4.3E-14 5.7E-14	FA10 0.17 0.22	df(FA10) 18.0 17.3	df 1 15 32 1 15 32 15 32 1 15 32	MS 0.6 54.9 0.2 5.7E-03 0.3 31.1 0.5 6.8E-03 0.2 19.1	F 2.6 253.6 37.7 0.60 66.8 68.9 1.2 107.6	RAM p 0.13 2.9E-15 4.5E-16 0.45 5.6E-11 5.0E-20 0.29 1.7E-12 4.2E 17	FA10 df	(FA10) 14.2 14.6	df 1 11 11 24 1 11 24 1 11	MS 0.0 65.9 0.1 1.2E-02 22.1 0.1 2.2E-02 1.4 1.2 9 0 2 0 2	F 0.07 626.3 8.8 2.4 347.9 2.9 5.7 5.7 5.4 4	VER p 0.80 9.8E-14 5.3E-06 0.15 2.5E-12 1.4E-02 0.04 5.8E-08 3.250.8	0.05 0.02	4.5
inout-Eyes Pelvic Pectoral length length	side individual interaction Meas. Error side individual interaction Meas. Error side individual interaction	df 1 19 19 40 1 19 19 40 1 19 19	MS 0.1 74.5 0.3 9.6E-03 0.2 55.7 0.5 2.1E-02 0.1 24.5 0.3 2.3 E 0.3	F 0.17 214.8 36.1 0.43 123.3 21.7 0.16 77.5 11.8	PDP p 0.69 3.1E-18 2.4E-19 0.52 5.7E-16 2.3E-15 0.69 4.3E-14 5.7E-11	FA10 0.17 0.22 0.14	df(FA10) 18.0 17.3 15.9	df 1 15 32 15 32 15 32 15 15 15 22	MS 0.6 54.9 0.2 5.7E-03 0.3 31.1 0.5 6.8E-03 0.2 19.1 0.2 4.0E 0.2	F 2.6 253.6 37.7 0.60 66.8 68.9 1.2 107.6 44.2	RAM p 0.13 2.9E-15 4.5E-16 0.45 5.6E-11 5.0E-20 0.29 1.7E-12 4.2E-17	FA10 df 0.11 0.23 0.09	(FA10) 14.2 14.6 14.3	df 1 11 11 24 1 11 24 1 11 11 24	MS 0.0 65.9 0.1 1.2E-02 22.1 0.1 2.2E-02 1.4 12.9 0.2 1.6E 0.2	F 0.07 626.3 8.8 2.4 347.9 2.9 5.7 54.4 15.0	VER p 0.80 9.8E-14 5.3E-06 0.15 2.5E-12 1.4E-02 0.04 5.8E-08 3.5E-08	FA10 0.05 0.02 0.11	df(FA10) 8.6 4.5 9.6
n Snout-Eyes Pelvic Pectoral Institution	side individual interaction Meas. Error side interaction Meas. Error side individual interaction meas. Error	df 1 19 19 40 1 19 40 1 19 19 40 1 9 40	MS 0.1 74.5 0.3 9.6E-03 0.2 55.7 0.5 2.1E-02 0.1 24.5 0.3 2.7E-02 1.6E-02	F 0.17 214.8 36.1 0.43 123.3 21.7 0.16 77.5 11.8	PDP p 0.69 3.1E-18 2.4E-19 0.52 5.7E-16 2.3E-15 0.69 4.3E-14 5.7E-11	FA10 0.17 0.22 0.14	df(FA10) 18.0 17.3 15.9	df 1 15 32 1 15 32 15 32 15 32 32	MS 0.6 54.9 0.2 5.7E-03 0.3 31.1 0.5 6.8E-03 0.2 19.1 0.2 4.0E-03 2.7E-02	F 2.6 253.6 37.7 0.60 66.8 68.9 1.2 107.6 44.2	RAM p 0.13 2.9E-15 4.5E-16 0.45 5.6E-11 5.0E-20 0.29 1.7E-12 4.2E-17 0.70	FA10 df	(FA10) 14.2 14.6 14.3	df 1 11 11 24 11 11 24 11 11 11 24	MS 0.0 65.9 0.1 1.2E-02 22.1 0.1 2.2E-02 1.4 12.9 0.2 1.6E-02 1.2E-04	F 0.07 626.3 8.8 2.4 347.9 2.9 5.7 54.4 15.0	VER p 0.80 9.8E-14 5.3E-06 0.15 2.5E-12 1.4E-02 0.04 5.8E-08 3.5E-08	FA10 0.05 0.02 0.11	<u>df(FA10)</u> 8.6 4.5 9.6
s- Num Snout-Eyes Pelvic Pectoral Iength	side individual interaction Meas. Error side interaction Meas. Error side individual interaction Meas. Error side	df 1 19 40 1 19 40 1 19 19 40 19 19 40 1	MS 0.1 74.5 0.3 9.6E-03 0.2 55.7 0.5 2.1E-02 0.1 24.5 0.3 2.7E-02 1.6E-03 9500	F 0.17 214.8 36.1 0.43 123.3 21.7 0.16 77.5 11.8 0.01 470.02	PDP p 0.69 3.1E-18 2.4E-19 0.52 5.7E-16 2.3E-15 0.69 4.3E-14 5.7E-11 0.93 1.5E-21	FA10 0.17 0.22 0.14	df(FA10) 18.0 17.3 15.9	df 1 15 15 32 1 15 32 1 5 32 15 32 1 5 32	MS 0.6 54.9 0.2 5.7E-03 0.3 31.1 0.5 6.8E-03 0.2 19.1 0.2 4.0E-03 3.7E-02	F 2.6 253.6 37.7 0.60 66.8 68.9 1.2 107.6 44.2 0.16	RAM p 0.13 2.9E-15 4.5E-16 0.45 5.6E-11 5.0E-20 0.29 1.7E-12 4.2E-17 0.70 0.70 0.70	FA10 dfl 0.11 0.23 0.09	(FA10) 14.2 14.6 14.3	df 1 11 11 24 1 11 11 24 1 11 24 1	MS 0.0 65.9 0.1 1.2E-02 0.2 22.1 0.1 2.2E-02 1.4 12.9 0.2 1.6E-02 1.3E-04 26.2	F 0.07 626.3 8.8 2.4 347.9 2.9 5.7 54.4 15.0 0.000 264.6	VER p 0.80 9.8E-14 5.3E-06 0.15 2.5E-12 1.4E-02 0.04 5.8E-08 3.5E-08 0.98 1.1E-11	0.05 0.02 0.11	df(FA10) 8.6 4.5 9.6
zyes- Snout-Eyes Pelvic Pectoral srculum length length	side individual interaction Meas. Error side individual interaction Meas. Error side individual interaction Meas. Error side individual individual individual	df 1 19 40 1 19 40 1 19 40 1 19 19 40 1 19 19	MS 0.1 74.5 0.3 9.6E-03 0.2 55.7 0.5 2.1E-02 0.1 24.5 0.3 2.7E-02 1.6E-03 8.5.9 0.2	F 0.17 214.8 36.1 0.43 123.3 21.7 0.16 77.5 11.8 0.01 479.8 22 1	PDP p 0.69 3.1E-18 2.4E-19 0.52 5.7E-16 2.3E-15 0.69 4.3E-14 5.7E-11 0.93 1.5E-21 1.6E-15	FA10 0.17 0.22 0.14	df(FA10) 18.0 17.3 15.9	df 1 15 15 32 1 15 32 1 5 32 1 5 32 1 5 32 1 5 32	MS 0.6 54.9 0.2 5.7E-03 0.3 3.1.1 0.5 6.8E-03 0.2 19.1 0.2 4.0E-03 3.7E-02 4.5.4 0.2	F 2.6 253.6 37.7 0.60 66.8 68.9 1.2 107.6 44.2 0.16 192.6 54.23	RAM p 0.13 2.9E-15 4.5E-16 0.45 5.6E-11 5.0E-20 0.29 1.7E-12 4.2E-17 0.70 2.3E-14 1.9E-18	FA10 df	(FA10) 14.2 14.6 14.3	df 1 11 24 1 11 11 24 1 11 11 24 1 11	MS 0.0 65.9 0.1 <u>1.2E-02</u> 0.2 22.1 0.1 <u>2.2E-02</u> 1.4 12.9 0.2 <u>1.6E-02</u> 1.3E-04 36.3 0 1	F 0.07 626.3 8.8 2.4 347.9 2.9 5.7 54.4 15.0 0.000 264.6 12 8	VER p 0.80 9.8E-14 5.3E-06 0.15 2.5E-12 1.4E-02 0.04 5.8E-08 3.5E-08 0.98 1.1E-11 7 7 E-08	FA10 0.05 0.02 0.11	df(FA10) 8.6 4.5 9.6
Eyes- Pelvic Pectoral Perculum length length	side individual interaction Meas. Error side individual interaction Meas. Error side individual interaction Meas. Error	df 1 19 40 1 19 40 19 40 19 19 40 19 19 19	MS 0.1 74.5 0.3 9.6E-03 55.7 0.5 2.1E-02 0.1 24.5 0.3 2.7E-02 1.6E-03 85.9 0.2	F 0.17 214.8 36.1 0.43 123.3 21.7 0.16 77.5 11.8 0.01 479.8 22.1	PDP p 0.69 3.1E-18 2.4E-19 0.52 5.7E-16 2.3E-15 0.69 4.3E-14 5.7E-11 0.93 1.5E-21 1.6E-15	FA10 0.17 0.22 0.14	df(FA10) 18.0 17.3 15.9 17.3	df 1 15 32 1 15 32 1 15 32 15 32 1 5 32 1 5 15	MS 0.6 54.9 0.2 5.7E-03 0.3 31.1 0.5 6.8E-03 0.2 19.1 0.2 4.0E-03 3.7E-02 4.5.4 0.2	F 2.6 253.6 37.7 0.60 66.8 68.9 1.2 107.6 44.2 0.16 192.6 54.22	RAM p 0.13 2.9E-15 4.5E-16 0.45 5.6E-11 5.0E-20 0.29 1.7E-12 4.2E-17 0.70 2.3E-14 1.9E-18	FA10 dff 0.11 0.23 0.09 0.12	(FA10) 14.2 14.6 14.3 14.3	df 1 11 24 1 11 11 24 1 11 11 24 1 11 11	MS 0.0 65.9 0.1 1.2E-02 22.1 0.1 2.2E-02 1.4 12.9 0.2 1.3E-04 36.3 0.1	F 0.07 626.3 8.8 2.4 347.9 2.9 5.7 54.4 15.0 0.00 264.6 13.8	VER p 0.80 9.8E-14 5.3E-06 0.15 2.5E-12 1.4E-02 0.04 5.8E-08 3.5E-08 0.98 1.1E-11 7.7E-08	FA10 0.05 0.02 0.11 0.06	df(FA10) 8.6 4.5 9.6 9.4

Table S2: Results of the two-way mixed model ANOVA (side-fixed × individual-random) with repeated measurements on each side. All interaction terms are highly significant meaning that FA is in all cases significant relative to measurement error. For each trait and each sample FA10, directly computed from variance component,⁴ is given as well as its approximate degree of freedom. df: degree of freedom, MS: mean square, F: F ratio, p-value, see Palmer (1994) for complementary information.² COC for Cocurès, COM for Combe Sourde, CUB for Cubières, PDP for Pont-de-la-Planche, RAM for Ramponenche, and VER for Vérié.

Supporting Information S3

Concentration measurements.

For trout tissues, dried and powdered samples (about 50-70 mg) were dissolved overnight on a hot plate using 3 mL of Suprapure HNO_3 (Merck, Germany). The solutions were precisely diluted and measured by high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) Thermo Element XR at the University of Montpellier II using external and internal (indium) calibrations (5 replicates). Leachates of sediments were measured under the same conditions.

Isotopic measurements.

Solutions used for concentration measurements were diluted with MilliQ water to obtain an ion flow on the ²⁰⁸Pb isotope of about 7.10⁵ cps. Pb isotopes (²⁰⁶Pb, ²⁰⁷Pb, & ²⁰⁸Pb) were measured using low resolution, analogue detection mode with peak hopping. Fifteen samples per peak were acquired close to the top of each peak. Two-fifths of the total time was consumed for the acquisition of each ²⁰⁶Pb and ²⁰⁷Pb, and one-fifth for the ²⁰⁸Pb isotope, which is the more abundant isotope in lead. Ten runs of 400 passes each were performed for a total acquisition time of about 6 min.

Mass bias correction was operated by bracketing several NIST 981 lead standards every five samples. Further details about the complete procedure can be found elsewhere for Q-ICP-MS, which is the same for HR-ICP-MS.^{5,6} Blank corrections were never required as they appeared negligible compared to the total amount of lead in the solutions. Errors for ²⁰⁶Pb/²⁰⁷Pb and ²⁰⁸Pb/²⁰⁶Pb ratios were typically 1-2 and 3-6 at the third decimal place, respectively (95% confidence intervals). Dead time correction was not needed as measurements were performed with the analogue detection mode.

	Cd (µg.g ⁻¹)	Pb (µg.g ⁻¹)	Cu (µg.g ⁻¹)	Zn (μg.g ⁻¹)
Determination limit (ng.g ⁻¹)	0.001	0.03	0.04	1.9
А	0.026	0.74	3.3	18.8
В	0.030	0.70	3.5	18.5
C	0.029	0.90	4.0	15.5
D	0.026	0.74	3.0	20.3
Certified	0.026	0.87	3.7	17.9
Recovery (%)	99-115	80-103	81-107	86-113

Table S4: Determination limits (in ng.g⁻¹) assessed on the basis of 10 times the standard deviation of blanks, measured and certified values of the NIST-1547 (peach leaves) standard reference material, and recovery percentage.

	Cd (µg.g ⁻¹)	Pb (µg.g ⁻¹)	Cu (µg.g ⁻¹)	Zn (μg.g ⁻¹)
Determination limit (ng.g ⁻¹)	0.001	0.03	0.04	1.9
А	0.49	0.180	235	112
В	0.53	0.186	239	127
С	0.56	0.191	260	143
D	0.54	0.187	244	137
E	0.54	0.206	261	146
F	0.59	0.170	284	175
G	0.51	0.236	257	132
н	0.53	0.203	280	138
I.	0.58	0.182	271	172
Certified	0.54	0.172	277	139
Recovery (%)	90-109	99-137	85-102	80-126

Table S5: Determination limits (in ng.g⁻¹) assessed on the basis of 10 times the standard deviation of blanks, measured and certified values of the BCR 185-R (bovine liver) standard reference material, and recovery percentage.

Generally the measured certified reference materials are close to the certified values (except measurement G for Pb in BCR-185R). In any case, the concentration dynamic in brown trout is so high that uncertainties of $\pm 30\%$ do not modify the patterns in Figure 2 where metal concentrations are plotted along a logarithmic scale.

	Cd (µg.g ⁻¹)	Pb (µg.g ⁻¹)	Cu (µg.g ⁻¹)	Zn (μg.g ⁻¹)
COC04 A	0.72	0.89	278	107
COC04 B	0.78	0.89	304	127
COM07 A	9.4	12.8	18	209
COM07 B	7.0	11.9	15	172
COM20 A	18.2	31.0	72	184
COM20 B	18.6	31.9	78	197
PDP14 A	5.0	5.0	55	77
PDP14 B	6.5	6.8	93	106
PDP19 A	4.8	4.9	71	113
PDP19 B	4.3	5.1	70	98
PDP20 A	5.7	7.4	66	132
PDP20 B	5.4	7.1	66	120
RAM04 A	13.5	5.5	178	162
RAM04 B	12.5	6.2	172	125
RAM06 A	8.7	5.9	111	154
RAM06 B	9.1	7.6	112	156

Table S6: Replicated analyses (Cd, Pb, Cu, Zn) for eight livers (dry-based concentrations), COC for Cocurès, COM for Combe Sourde, PDP for Pont-de-la-Planche, RAM for Ramponenche. Analyses are less replicable with indigenous trout livers (especially for Pb in PDP14) than for CRMs, probably because liver powders present a greater heterogeneity. In any case, the concentration dynamic in brown trout is so high that uncertainties do not modify the patterns in Figure 2, where metal concentrations are plotted along a logarithmic scale.

	Cd	Pb	Си	Zn
	(µg.g ⁻¹)	(µg.g ⁻¹)	(µg.g ⁻¹)	(µg.g ⁻¹)
COC04 A	0.005	0.072	1.2	27.0
COC04 B	0.005	0.070	1.1	28.1
COC08 A	0.008	0.068	1.6	58.3
COC08 B	0.007	0.090	1.0	55.5
COC09 A COC09 B	0.007	0.077	0.95	12.8 11.5
PDP14 A	0.054	0.160	1.6	48.6
FUP14 D	0.001	0.211	1.9	42.7

Table S7: Replicated analyses (Cd, Pb, Cu, Zn) for four muscles (dry-based concentrations), COC for Cocurès and PDP for Pont-de-la-Planche.

Sample	Cd (µg.g ⁻¹)	Pb (µg.g ⁻¹)	Cu (µg.g ⁻¹)	Zn (µg.g⁻¹)	Sample	Cd (µg.g ⁻¹)	Pb (µg.g ⁻¹)	Cu (µg.g ⁻¹)	Zn (µg.g⁻¹)
COC01	0.074	0.31	9.6	32	PDP01	0.50	0.41	10	11
COC02	0.10	0.16	16	29	PDP02	1.3	2.3	19	59
COC03	0.086	0.19	28	22	PDP03	1.3	2.3	48	61
COC04 COC05	0.16	0.19	60 17	25 //1		1.2	0.86	38 31	15 31
COC06	0.005	0.22	11	21	PDP06	1.1	1.4	28	23
COC07	0.088	0.12	14	28	PDP07	0.70	0.87	33	18
COC08	0.092	0.29	53	24	PDP08	0.39	0.68	9,0	19
COC09	0.086	0.19	63	32	PDP09	0.95	1.0	40	48
COC10	0.089	0.076	11	32		0.97	1.1	38	26
COC12	0.047	0.060	14 6 2	23 26	PDP11 PDP12	1.1	2.0	30 37	24
COC12	0.041	0.038	22	25	PDP13	0.38	1.2	31	29
COC14	0.046	0.057	14	26	PDP14	1.1	1.1	14	17
COC15	0.049	0.049	18	34	PDP15	1.0	2.9	41	31
COC16	0.038	0.069	8.6	14	PDP16	2.1	3.9	23	28
COC17	0.068	0.070	8.3	29		0.78	0.98	21	27
COC18	0.039	0.068	5.8 13	23 26		1.7	5.8 1.1	20 16	20
COC20	0.037	0.061	5.1	18	PDP20	1.2	1.5	15	27
COM01	1.9	1.3	6.8	28	RAM01	2.0	4.1	93	39
COM02	2.0	4.0	22	50	RAM02	23	2.0	- 69	55
COM04	2.0	4.8	4.7	53	RAM04	2.9	1.3	41	32
COM05	1.6	3.2	4.0	36	RAM05	-	-	-	-
COM06	8.3	21	19	100	RAM06	1.9	1.5	27	34
COM07	1.7	2.5	3.3	39	RAM07	-	-	-	-
	1.9	5.4	3.0	45	RAIVIUS	3.9	1.7	7.9 27	32
COM10	-	-	-	-	RAM10	3.2	1.0	37	49
COM11	4.1	5.1	7.7	38	RAM11	1.6	0.74	29	38
COM12	0.4	3.3	6.2	31	RAM12	1.3	0.98	25	33
COM13	4.8	6.0	13	42	RAM13	0.40	0.26	9.4	14
COM14	2.6	7.5	7.0	50	RAM14	1.4	0.56	30	34
COM15	1.8	3.1 9.1	14 7 1	30		1.1	0.57	20	25
COM17	0.5	0.4	4.5	18	RAM17	1.0	0.54	48	46
COM18	2.2	24	14	50	RAM18	1.4	0.81	29	33
COM19	0.7	1.5	5.8	48	RAM19	1.5	0.67	19	49
COM20	3.8 3.7	6.4 4 8	15 13	39 57	RAM20	1.2	0.58	14	25
COM22	2.0	2.5	4.5	29	VER01	0.80	2.1	6.7	21
					VER02	0.81	0.11	5.1	32
CUB01	0.59	0.16	17	41	VER03	1.5	0.23	11	68
CUB02	0.20	0.14	2.6	11	VER04	0.77	0.07	6.7	16
CUB03	0.27	0.10	7.0	17	VER05	1.7	0.12	11	63
	0.30	0.055	0.8 8.0	22	VERUO	1.2	0.11	10	33
CUB06	0.33	0.068	10	54	VER08	1.9	0.11	16	21
CUB07	0.36	0.11	6.9	28	VER09	0.82	0.17	9.1	15
CUB08	0.16	0.067	5.2	26	VER10	1.2	0.14	11	42
CUB09	0.42	0.065	17	30	VER11	0.95	0.10	6.6	28
	0.35	0.14	6.9	23	VER12	0.42	0.20	2.9	17
CUB11 CUB12	- 0 29	- 0 080	- 18	- 17	SLIPA	0.017	0 011	122	28
CUB13	0.36	0.098	10	13	SUPB	0.018	0.013	71	38
CUB14	1.12	0.15	16	50					
CUB15	0.67	0.097	15	34					
CUB16	0.17	0.079	4.6	19					
CUB17	0.23	0.085	1.6	21					
CUB18	0.45	0.13	9.8	27					
CUB20	0.51	0.064	7.2	21					

Table S8: Cd, Pb, Cu and Zn concentrations of trout livers (corrected to express the results in terms of concentrations in wet tissues). COC for Cocurès, COM for Combe Sourde, CUB for Cubières, PDP for Pont-de-la-Planche, RAM for Ramponenche, VER for Verié, and SUP for commercial trout (supermarket).

Sample	Cd (µg.g⁻¹)	Pb (µg.g ⁻¹)	Cu (µg.g⁻¹)	Zn (µg.g ⁻¹)	Sample	Cd (µg.g ⁻¹)	Pb (µg.g ⁻¹)	Cu (µg.g ⁻¹)	Zn (µg.g⁻¹)
COC01	0.012	0.029	0 34	13		0.008	0.035	0 31	15
COC02	0.002	0.035	0.41	4.1	PDP02	0.002	0.030	0.09	2.5
COC03	0.002	0.037	0.38	13	PDP03	0.010	0.044	0.39	15
COC04	0.001	0.019	0.32	6.4	PDP04	0.009	0.029	0.37	6.8
COC05	0.002	0.022	0.44	9.1	PDP05	0.012	0.059	0.30	5.2
COC06	0.002	0.019	0.50	12	PDP06	0.007	0.095	0.39	9.8
0007	0.001	0.037	0.32	7.9 1E		0.018	0.078	0.32	8.9
0000	0.002	0.017	0.45	3.0		0.003	0.055	0.29	14
COC10	0.002	0.029	0.21	3.7	PDP10	0.009	0.041	0.44	7.6
COC11	0.002	0.030	0.35	9.4	PDP11	0.008	0.052	0.43	9.0
COC12	0.003	0.063	0.62	7.1	PDP12	0.007	0.030	0.27	6.3
COC13	0.002	0.017	0.41	14	PDP13	0.006	0.046	0.41	9.1
COC14	0.003	0.022	0.24	19	PDP14	0.009	0.036	0.25	6.0
COC15	0.002	0.044	0.49	8.4	PDP15	0.007	0.112	0.37	4.8
COC16 COC17	0.002	0.025	0.19	7.0	PDP16	0.009	0.151	0.22	7.9
COC18	0.002	0.018	0.25	14 8 /		0.007	0.066	0.41	0.7 15
COC18	0.002	0.027	0.31	0.4 11	PDP10	0.009	0.273	0.28	13
COC20	0.002	0.024	0.66	10	PDP20	0.006	0.035	0.18	8.5
COM01	0.025	0.191	0.28	11	RAM01	0.009	0.069	0.46	4.2
COM02	0.036	0.147	0.55	8.5	RAM02	0.024	0.037	0.32	7.8
COM03	0.033	0.199	0.35	10	RAM03	0.007	0.021	0.33	9.9
COM04	0.118	0.091	0.42	9.2	RAM05	0.012	0.045	0.31	7.0
COM05	0.086	0.101	0.59	8.4	RAM06	0.008	0.146	0.24	7.8
	0.080	0.650	0.32	10		0.015	0.052	0.40	10
COM08	0.103	0.098	0.40	14	RAM09	0.021	0.118	0.34	11
COM09	0.023	0.177	0.82	12	RAM10	0.016	0.046	0.37	11
COM10	0.054	0.259	0.23	7.1	RAM11	0.013	0.035	0.29	7.8
COM11	0.058	0.178	0.31	12	RAM12	0.011	0.048	0.37	5.5
COM12	0.011	0.089	0.37	8.4	RAM13	0.017	0.042	0.35	6.2
COM13	0.037	0.111	0.61	22	RAM14	0.021	0.052	0.55	15
COM14	0.056	0.364	0.25	23	RAM15	0.015	0.056	0.54	13
COM15	0.070	0.240	0.44	97		0.015	0.037	0.44	20
COM17	0.171	0.451	0.42	10	RAM18	0.010	0.055	0.40	65
COM18	0.071	0.395	0.33	25	RAM19	0.011	0.037	0.35	17
COM19	0.010	0.048	0.34	5.7	RAM20	0.010	0.025	0.35	14
COM20	0.060	0.221	0.37	14					
COM21	0.100	0.951	0.51	14	VER01	0.013	0.019	0.33	6.5
COM22	0.041	0.067	0.24	23	VER02	0.042	0.038	0.34	6.3
CUP01	0.000	0.020	0.51	14	VER03	0.035	0.067	0.59	9.4
	0.008	0.029	0.51	14 6 1	VER04	0.003	0.053	0.03	13
CUB02	0.008	0.023	0.35	12	VER06	0.013	0.021	0.24	49
CUB04	0.013	0.035	1.49	24	VER07	0.066	0.085	0.50	22
CUB05	0.005	0.015	0.40	6.1	VER08	0.021	0.028	0.38	7.5
CUB06	0.005	0.021	0.35	8.4	VER09	0.012	0.020	0.26	11
CUB07	0.007	0.020	0.92	9.9	VER10	0.036	0.073	0.39	4.7
CUB08	0.008	0.045	0.47	8.6	VER11	0.037	0.067	0.55	11
CUB09	0.007	0.014	0.70	7.0	VER12	0.019	0.012	0.21	4.0
CUB10	0.004	0.018	0.39	10	SI ID1	0 001	0.019	0.27	1 9
CUB11 CUB12	0.007	0.017	0.59	52	SUP7	0.001	0.010	0.27	4.0 9.6
CUB13	0.034	0.030	0.27	4.7	SUP3	0.001	0.014	0.30	5.6
CUB14	0.007	0.010	0.32	8.0	SUP4	0.002	0.032	0.36	5.4
CUB15	0.010	0.032	0.30	5.8	SUP5	0.002	0.054	0.50	7.6
CUB16	0.010	0.074	0.48	7.1	SUP6	0.002	0.034	0.37	4.0
CUB17	0.014	0.139	0.61	44	SUP7	0.001	0.009	0.25	3.0
CUB18	0.032	0.016	0.37	8.6	SUP8	0.001	0.017	0.28	4.4
CUB19	0.016	0.041	0.42	18	2068	0.002	0.038	0.46	4.1
CUBZU	0.000	0.017	0.20	5.4					

Table S9: Cd, Pb, Cu and Zn concentrations of trout muscles (corrected to express the results in terms of concentrations in wet tissues). COC for Cocurès, COM for Combe Sourde, CUB for Cubières, PDP for Pont-de-la-Planche, RAM for Ramponenche, VER for Verié, and SUP for commercial trout (supermarket).

		r _{spearma}	_n (liver)		r _{spearman} (muscle)					
	Cd	Pb	Cu	Zn	Cd	Pb	Cu	Zn		
сос	0.807*	0.821*	0.485*	0.126	-0.386	-0.252	-0.100	-0.083		
СОМ	0.569*	0.637*	0.661*	0.314	-0.143	0.243	0.132	0.187		
CUB	0.752*	0.198	0.774*	0.509*	-0.258	-0.528*	-0.366	-0.251		
PDP	0.211	0.339	-0.111	-0.274	0.011	0.320	-0.078	0.064		
RAM	0.556*	0.741*	0.212	0.232	-0.080	0.230	-0.322	-0.371		
VER	0.614*	0.183	0.570*	0.016	-0.447	-0.096	0.032	0.319		

Table S10: Spearman's correlation coefficients between age and hepatic and muscle contents of Cd, Pb, Cu and Zn (wet-based concentrations) for the 6 study sites. In bold and *: p<0.05. COC for Cocurès, COM for Combe Sourde, CUB for Cubières, PDP for Pont-de-la-Planche, RAM for Ramponenche, and VER for Vérié.

Sample	Cd	Pb	Cu	Zn
	(µg.g ⁻¹)	(µg.g ⁻¹)	(µg.g ⁻¹)	(μg.g ⁻¹)
COC A	1.4	420	20	160
COC B	1.7	250	19	260
COC C	2.1	280	18	330
COM A	190	25000	53	31000
COM B	160	8100	40	29000
COM C	120	11000	24	25000
CUB A	5.2	2200	17	1200
CUB B	5.4	250	16	1000
CUB C	2.4	290	14	830
PDP A	3.0	880	25	260
PDP B	2.0	860	46	200
PDP C	1.5	200	20	150
RAM A	9.0	2100	61	1400
RAM B	7.5	550	57	1300
VER A	0.31	67	15	140
VER B	0.41	70	14	130

Table S11: Cd, Pb, Cu and Zn concentrations in streambed sediments (fraction < 250 μ m). COC for Cocurès, COM for Combe Sourde, CUB for Cubières, PDP for Pont-de-la-Planche, RAM for Ramponenche, and VER for Vérié.

Sample	²⁰⁶ Pb/ ²⁰⁷ Pb	±	²⁰⁸ Pb/ ²⁰⁶ Pb	±
COC01	1.178	0.001	2.093	0.004
COC04	1.178	0.002	2.093	0.004
COC06	1.176	0.001	2.096	0.003
COC08	1.178	0.002	2.096	0.003
COM03	1.182	0.002	2.087	0.004
COM06	1.183	0.002	2.084	0.003
COM12	1.183	0.001	2.089	0.005
COM14	1.183	0.002	2.087	0.005
COM22	1.181	0.001	2.085	0.004
CUB01	1.179	0.002	2.091	0.004
CUB01dupl	1.178	0.002	2.092	0.007
CUB14	1.180	0.002	2.089	0.003
PDP11	1.172	0.002	2.094	0.006
PDP12	1.172	0.001	2.096	0.006
PDP15	1.173	0.001	2.092	0.005
PDP16	1.173	0.002	2.094	0.005
PDP20	1.173	0.002	2.096	0.004
RAM01	1.175	0.002	2.094	0.004
RAM04	1.176	0.002	2.092	0.004
RAM06	1.176	0.002	2.095	0.003
RAM18	1.173	0.001	2.098	0.005
RAM19	1.175	0.002	2.098	0.003

Table S12: ²⁰⁶Pb/²⁰⁷Pb and ²⁰⁸Pb/²⁰⁶Pb ratios in trout livers. COC for Cocurès, COM for Combe Sourde, CUB for Cubières, PDP for Pont-de-la-Planche, RAM for Ramponenche, and VER for Vérié. Errors are given at 95% confidence level. *dupl*. for duplicate.

Figure S13: FA10 for pectoral length (a), pelvic length (b), snout-eye distance (c), operculum-eye distance (d) represented by white boxes. Median Pb in livers (wet-based concentration) for each site is plotted as a bold black line for comparison. COC for Cocurès, COM for Combe Sourde, CUB for Cubières, PDP for Pont-de-la-Planche, RAM for Ramponenche, and VER for Vérié.

Figure S14: FA10 for pectoral length (a), pelvic length (b), snout-eye distance (c), operculum-eye distance (d) represented by white boxes. Median Cd in livers (wet-based concentration) for each site is plotted as a bold black line for comparison. COC for Cocurès, COM for Combe Sourde, CUB for Cubières, PDP for Pont-de-la-Planche, RAM for Ramponenche, and VER for Vérié.

	Pb (j	μg.g ⁻¹)	Cd (j	μg.g ⁻¹)
Pectoral length	0.423	(p < 10 ⁻⁵)	0.431	(p < 10 ⁻⁵)
Pelvic length	0.435	(p < 10 ⁻⁵)	0.404	(p < 10 ⁻⁴)
Snout-Eyes length	0.335	$(p < 10^{-3})$	0.380	$(p < 10^{-4})$
Eyes-Operculum length	0.304	$(p < 10^{-3})$	0.305	(p < 10 ⁻³)

Table S15: Spearman's correlation coefficient between R-L (absolute value) of each trait and Pb or Cd in liver (dry-based concentration).

Figure S16: Pelvic length (right minus left, in absolute value) vs Pb in liver (dry-based concentration). Closed circles for COC, grey boxes for CUB, white diamonds for COM, closed triangles for PDP, grey stars for RAM, and crosses for VER. Significant linear regression is plotted together with its 99% confidence interval (Pearson's correlation coefficient = 0.396, p<0.001). A non-parametric approach using Spearman's correlation coefficient provides $r_{spearman} = 0.44$, which is also significant ($p < 10^{-5}$). This graph is representative of the results obtained with the other three traits. The specimens appear to be clustered by site, so that at least a part of the significant but moderate correlation is linked to the fact that populations differ in terms of Pb concentrations and asymmetry levels.

	Ref	wet/dry	n	Cd (µg.g⁻¹)	Pb (µg.g ⁻¹)	Cu (μg.g ⁻¹)	Zn (μg.g ⁻¹)
Liver PNC - France Commercial trout Spain Buško Blato -Bosnia Kola Region, Russia	This study This study 7 8 9	wet wet wet dry	107 4 45 10 23	$0.037-8.3^{a}$ $0.014-0.015^{a}$ 0.1 ± 0.2^{b} $0.069-0.687^{a}$ $4.3-7.6^{a}$	$0.047-24.0^{a}$ $0.002-0.017^{a}$ 0.2 ± 0.3^{b} $0.694-1.797^{a}$ $0.1-0.73^{a}$	1.6-92.9 ^a 50.4-104.8 ^a 12±10 ^b 38.4-51.5 ^a 72-490 ^a	11.3-102 ^a 22.8-30.6 ^a 28 ± 8 ^b 39.4-88.4 ^a 92-239 ^a
Muscle PNC Commercial trout Buško Blato-Bosnia Kola Region, Russia UE guidelines	This study This study ⁸ 9	wet wet dry wet	113 9 10 23	0.001-0.17 ^a 0.001-0.002 ^a 0.025-0.52 ^a 0.006-0.071 ^a 0.05	0.01-0.95 ° 0.010-0.054 ° 0.671-1.106 ° - 0.3	0.048-1.48 ^ª 0.25-0.54 ^ª 0.418-0.652 ^ª 1-5.2 ^ª	2.48-43.7 ^a 3.0-9.6 ^a 22.4-63.7 ^a 10-65 ^a

Table S17: Metal concentrations measured in livers and muscles of brown trout from the PNC and values found in the literature. n: number of individuals, ^a:range, ^b: mean and standard deviation.

Cited Literature for Supporting Information

(1) Palmer, A. R.; Strobeck, C. Fluctuating asymmetry analyses revisited. In Developmental instability: causes and consequences; Polak M., Ed.; Oxford University Press: Oxford, UK, 2003; p. 279–319.

(2) Palmer, A. R. Fluctuating asymmetry analyses: a primer. In Developmental instability, its origins and evolutionary implications.; Markow T. A., Ed.; Kluwer Academic Publishers: Dordrecht, Netherlands, 1994; p. 335-364.

(3) Rice, W. R. Analyzing tables of statistical tests. Evolution 1989, 43, (1), 223–225.

(4) Palmer, A. R.; Strobeck, C. Fluctuating Asymmetry: Measurement, Analysis, Patterns. Ann. Rev. Ecol. Syst. 1986, 17, 391-421.

(5) Monna, F.; Loizeau, J.-L.; Thomas, B. A.; Guéguen, C.; Favarger, P.-Y. Pb and Sr isotope measurements by inductively coupled plasma-mass spectrometer: efficient time management for precision improvement. Spectrochem. Acta, Part B. 1998, 53, (9), 1317-1333.

(6) Monna, F.; Loizeau, J.-L.; Thomas, B.; Guéguen, C.; Favarger, P.-Y.; Losno, R.; Dominik, J. Noise identification and sampling frequency determination for precise Pb isotopic measurements by quadrupole-based Inductively Coupled Plasma Mass Spectrometry. Analusis 2000, 28, (8), 750–757.

(7) Linde, A. R.; Sanchez-Galan, S.; Izquierdo, J. I.; Arribas, P.; Maranon, E.; García-Vázquez, E. Brown trout as biomonitor of heavy metal pollution: effect of age on the reliability of the assessment. Ecotoxicol. Environ. Saf. 1998, 40, (1-2), 120–125.

(8) Has-Schön, E.; Bogut, I.; Kralik, G.; Bogut, S.; Horvatić, J.; Čačić, I. Heavy metal concentration in fish tissues inhabiting waters of « Buško Blato » reservoar (Bosnia and Herzegovina). Environ. Monit. Assess. 2008, 144, (1), 15–22.

(9) Moiseenko, T. I.; Kudryavtseva, L. P. Trace metal accumulation and fish pathologies in areas affected by mining and metallurgical enterprises in the Kola Region, Russia. Environ. Pollut. 2001, 114, (2), 285-297.

(10) Official Journal of the European Union Commission regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs.; 2006; http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF