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H I G H L I G H T S

• Trace-metal behaviour is estimated in soils affected by past mining and metallurgy.
• Kinetic extractions of soils are modelled by two first-order reactions.
• Lead origin can be estimated in kinetic extracts by isotopic composition.
• Stable organo-metallic complex remains but anthropogenic metal may have percolated.
• Kinetic results suggest that metals do not threaten biota, in these soils at least.
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The aim of this study is to estimate the long-term behaviour of trace metals, in two soils differently impacted by
past mining. Topsoils from two 1 km2 zones in the forested Morvan massif (France) were sampled to assess the
spatial distribution of Cd, Cu, Pb and Zn. The first zone had been contaminated by historical mining. As expected,
it exhibits higher trace-metal levels and greater spatial heterogeneity than the second non-contaminated zone,
supposed to represent the local background.One soil profile fromeach zonewas investigated in detail to estimate
metal behaviour, and hence, bioavailability. Kinetic extractions were performed using EDTA on three samples:
the A horizon from both soil profiles and the B horizon from the contaminated soil. For all three samples, kinetic
extractions can be modelled by two first-order reactions. Similar kinetic behaviour was observed for all metals,
but more metal was extracted from the contaminated A horizon than from the B horizon. More surprising is
the general predominance of the residual fraction over the “labile” and “less labile” pools. Past anthropogenic in-
puts may have percolated over time through the soil profiles because of acidic pH conditions. Stable organo-
metallic complexes may also have been formed over time, reducing metal availability. These processes are not
mutually exclusive. After kinetic extraction, the lead isotopic compositions of the samples exhibited different sig-
natures, related to contamination history and intrinsic soil parameters. However, no variation in lead signature
was observed during the extraction experiment, demonstrating that the “labile” and “less labile” lead pools do
not differ in terms of origin. Even if trace metals resulting from past mining and metallurgy persist in soils long
after these activities have ceased, kinetic extractions suggest that metals, at least for these particular forest
soils, do not represent a threat for biota.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Elevated trace-metal (TM) concentrations in soil surface horizons
represent a potential threat to terrestrial and aquatic ecosystems. The
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accumulation of metals in soils may sometimes be of natural origin,
but is often related to human activity. Many recent studies have focused
on the characterisation of metal contamination in soils or sediments
near to metallurgical industrial sites, whether previously or currently
active (Aleksander-Kwaterczak and Helios-Rybicka, 2008; Chopin and
Alloway, 2007; Douay et al., 2009; Ettler et al., 2005; Hudson-Edwards
et al., 2001; Kochem Mallmann et al., 2012; van Oort et al., 2009).
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Much less attention has been paid to archaeological mining activity,
which is nonetheless known to be responsible for elevated TM levels
in ecosystems (Macklin et al., 1997; Pyatt et al., 2000). It is therefore es-
sential to assess long-term metal dynamics and bioavailability in soils
from historically contaminated sites.

Soils are highly complex, requiring sophisticated modelling of pol-
lutants, focusing particularly on their incorporation into biota (van
Oort et al., 2006; Pajak and Jasik, 2011). Several methods based on the
use of chemical reagents have been developed to estimate the chemical
forms (speciation) by which TMs are associated to soil constituents.
Chemical extractions often include several sequential steps with in-
creasing extraction strength (Bade et al., 2012; Tessier et al., 1979; Ure
et al., 1993). They have nonetheless been criticised because of their
poor selectivity (Bermond, 2001; Gleyzes et al., 2002; Nirel and Morel,
1990). Other authors have hypothesised that kinetic metal extraction
might better reflect the dynamics of TMs in soils. Among chemical re-
agents, ethylenediaminetetraacetic acid (EDTA) has been widely used
to estimate the total extractable metal pool (Bermond et al., 1998;
Brunori et al., 2005; Fonseca et al., 2011; Gismera et al., 2004; Jalali
and Tabar, 2013; Labanowski et al., 2008; Leleyter et al., 2012;
Manouchehri and Bermond, 2009; Manouchehri et al., 2006). It is a
strong non-specific reagent, reported to remove organically bound
metals, as well as those associated to oxides or secondary clay minerals
(Lo and Yang, 1999). Even though this method does not mimic metal
behaviour under natural conditions, EDTA-based kinetic extraction still
provides two types of pertinent data: (i) the proportion of potentially ex-
tractable metals to total metal content in the sample, and (ii) the kinetic
extraction behaviour ofmetals (Labanowski et al., 2008). It has been sug-
gested that kinetic extractions can be efficiently modelled by the sum of
multiple first-order reactions, generally reduced to two (Gutzman and
Langford, 1993). The first, or “labile”, pool is composed of the readily ex-
tractedmetal fraction. The second, “less labile” pool is composed ofmore
slowly removedmetal, reasonably attributed to themetal fractionwhich
is only “potentially mobile” (Bermond et al., 2005; Fangueiro et al.,
2005). The third pool consists of a fraction that is non-extractable using
EDTA. It is composed of strongly bound metals, or elements occurring
in the lattice network of minerals, not readily transferred to biota. Al-
though EDTA-based kinetic extractions provide no information about
TM origin, such information can be obtained by stable lead isotope anal-
ysis. This method has frequently been used to trace Pb sources in surface
environments, and more particularly in soils (Cloquet et al., 2006; Erel
and Patterson, 1994; Ettler et al., 2004; Izquierdo et al., 2012; Kylander
et al., 2008; Reimann et al., 2011, 2012), but has never been applied spe-
cifically to kinetic extractions. Complementary information about the
fundamentals of the Pb isotope method can be found in Komárek et al.
(2008).

Here, our main objective is to examine the kinetic behaviour of
metals in a context of historicalmining, and hence to assess their poten-
tial bioavailability. Such past contamination is less frequently studied
than contamination from modern urban and industrial areas, or from
agricultural practices (amendments). As pointed out by Ettler et al.
(2012), most metal mobility studies have been performed on soils
with circum-neutral or alkaline pH, particularly on the plough layer of
agricultural soils (Labanowski et al., 2008; Manouchehri et al., 2006).
The behaviour ofmetals in forest soils is lesswell known, although acid-
ic conditions have been shown to favour the migration of more mobile
elements, such as Zn andCd (vanOort et al., 2009), aswell as lessmobile
elements, such as Pb (Semlali et al., 2001). The forest soils of theMorvan
region (north Burgundy) are particularly well adapted to that aim. The
Morvan is today one of the least inhabited regions in France, yet this
area has experienced several phases of mining and smelting, identified
as early as the Bronze Age, and throughout the Iron Age (Forel, 2009;
Jouffroy-Bapicot et al., 2007; Monna et al., 2004). Even though all such
activity finally ceased during the 20th century, lasting TM soil contami-
nation has resulted. In this study, the area affected by historical mining
was estimated using the spatial distribution of Cd, Cu, Pb and Zn in acidic
topsoils collected from both contaminated and non-contaminated forest
sites. Possible discrepancies in metal fates according to depth were stud-
ied by performing kinetic extractions. EDTA was used as the chemical re-
agent for extractions, as it allows total fractions of potentially mobile
metals to be assessed and hence compared between soils. In a context
of moderate contamination, as is the case here, EDTA was preferred to
other chemicals (e.g. CaCl2 or citrate), which are expected to extract ex-
changeable fractions only, or to present a moderate metal complexation
strength. The origin of the lead in the extracted pools was then deter-
mined from the lead isotopic compositions of the resulting extracts. Ki-
netic extractions are used for the first time on forested soils in a
regional nature park, erroneously thought to be free of any anthropogenic
contamination, but in reality affected by past mining. Using lead isotope
analysis in this context is also an innovation since, to our knowledge,
thismethod has never been combinedwith kinetic extractions until now.

2. Materials and methods

2.1. Study area

The Morvan, located in the north-east part of the Massif Central,
France (Fig. 1), is a Hercynian middle-altitude mountain (elevation
200–900 m, a.s.l.), mainly composed of granitic and volcano-sedimentary
rocks (rhyolites and conglomerates). The entire massif is crosscut
by micro-granitic or quartz veins. Three main types of mineral de-
posits have been identified: (i) hydrothermal mineralised quartz
veins, typically with U, F–Ba, Pb–Zn–Ag, or Sn–W, (ii) abundant
polymetallic mineralisation in NNW–SSE and NNE–SSW veins, and,
(iii) stratiform F–Ba ore deposits in Early Mesozoic formations
(Delfour, 2007; Gourault, 2009).

The study of several peat archives has shown that local metallurgy
started as early as the Late Bronze Age (ca. 1300 cal BC) and peaked
during the Iron Age, when the Celts occupied the area (Monna et al.,
2004). A mining trench, recently excavated by Cauuet and Boussicault
(2006) at the archaeological site of Bibracte, seems to extend under-
neath the walls of the oppidum. It is filled by material dating from the
1st century BC, demonstrating unambiguously the existence of local
metal exploitation during the Celtic period. Many other geomorpholog-
ical anomalies, such aswide trenches, gullies and pits have been discov-
ered and interpreted as being remains of mining works (Jouffroy-
Bapicot et al., 2007). Radiocarbon dating of six pieces of charcoal
trapped in iron tap slags indicates periods of activity lasting from the
2nd to the 6th centuries AD, while one piece yielded a mediaeval date
in the 12th century AD (Monna et al., submitted for publication).
Concerning more recent times, textual archives indicate that mining
continued sporadically until its final collapse during the 20th century
AD. Nowadays, the area is a supposedly pristine, protected nature park.

Two study sites (~1 km2) were selected: a non-contaminated refer-
ence area free of mining and a historical mining area. The first, located
near Gien-sur-Cure, is presumed to have been affected only by long-
range diffuse anthropogenic inputs. This historically non-contaminated
site should therefore represent the local geochemical background. The
second site, La Ruchette, is located about 7 km S-W of the Bibracte
oppidum. It is considered to be a contaminated site, since mining for py-
rite and iron oxides occurred there from the 19th century to the early
20th century AD (Delaville, 1858; Gourault et al., 2012). Two pieces of
charcoal trapped in iron slags were also dated by radiocarbon at around
130 AD–426 AD, proving the interest of early societies for mineral re-
sources in this specific area (Monna et al., submitted). Both sites are locat-
ed in forested areas.

2.2. Soil sampling

2.2.1. Bulk analysis for topsoil mapping
The grid for the non-contaminated Gien-sur-Cure site was com-

posed of 24 plots, 200 × 200 m2, while the contaminated La Ruchette



Fig. 1. Location of the study area with simplified lithology of the Morvan Regional Nature Park (MRNP).

Fig. 2. Topsoil sample protocol for the two study sites and location of the soil horizon profile (SP), solid red circles. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Table 2
Main physico-chemical characteristics of soil horizons sampled for kinetic extraction.

Gien-sur-Cure La Ruchette

Coordinates (centroid in WGS84, EPSG 4326)
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site was divided into 96 plots, 100 × 100 m2 (Fig. 2). Fresh grass cover
and litter were removed before topsoil sampling. At La Ruchette, 96
(~1 kg) geo-referenced bulk samples were collected, while only 24
samples were collected at Gien-sur-Cure. For each plot, a single bulk
sample, stored in a hermetic polyethylene bag, was prepared from 5
auger samples (0–20 cmdepth), following a 20 m cross-shaped pattern
(Fig. 2). A pedestrian prospection campaign was systematically under-
taken at La Ruchette to obtain the most exhaustive inventory possible
of the zones where mining and metallurgical activities had taken place
in the past (Gourault, 2009; Tamas, 2004). Each discovery was geo-
referenced using aGPS device (Fig. 2). In the laboratory, all bulk samples
were air-dried, sieved to 2 mm, and carefully quartered. Sub-samples of
the 120 topsoils were finely ground in an acid-cleaned agate mortar for
elemental analyses. Concentrations in Cd, Cu, Pb, and Zn for the 120 top-
soils were measured by ICP-AES after pseudo-total aqua regia digestion
at Actlabs (Ontario, Canada). Analytical quality control fromActlabswas
performed by measuring 8 replicates, 5 blanks and several certified
reference materials (CRMs). To verify this quality control, an additional
12 replicates, together with JSD-1, JSD-2, BCSS-1 and PACS-1 CRMs
(stream, estuarine, and harbour sediments)were included as blind sam-
ples. The Actlabs protocol set the limits of detection (LOD) at 0.5 mg kg−1

for Cd, 1 mg kg−1 for Cu, 2 mg kg−1 for Pb and2 mg kg−1 for Zn. All rep-
licates are typically within±5% (±18% at worst). Recovery formeasured
concentrations of reference materials fluctuates between 79 and 105% of
certified values (Table 1). Reference samples were digested by aqua regia
alone, with no HF, which explains why recovery percentages are often
below 100%. However, our results are quite comparable to those reported
in the literature for BCSS-1 and PACS-1 after partial digestion (Dunn et al.,
1996;Gali Navarro et al., 2011). The relatively low recovery of Pb for JSD-1
could be due to the low Pb concentration or perhaps its deep strong-
binding in minerals like silicates, not well dissolved by aqua regia.

2.2.2. Horizon sampling for kinetic extraction
In order to collect a sample from each soil horizon, a soil profile pit

was dug at each of the two sites, in a fairly flat area close to the summit,
so that any anthropogenic inputs would be of atmospheric origin
(Fig. 2). The sampling location for the pit at La Ruchette was chosen to
Table 1
Reference materials measured (after aqua regia digestion) and corresponding certified
values (obtained after total digestion). For BCSS-1 and PACS-1, indicated values after par-
tial digestion are also provided: a for mean BCSS-1 results after aqua regia extraction
(Dunn et al., 1996) and b for mean PACS-1 results after aqua regia + H2O2 extraction
(Gali Navarro et al., 2011). For these two CRMs, recovery percentages are also reported.
LOD stands for “limit of detection”.

Cd Cu Pb Zn

LOD (mg kg−1) 0.5 1 2 2

JSD-1 (mg kg−1)
Measured bLOD 22 6 93
Certified – 22.2 14 99
Recovery – 99% 43% 94%

JSD-2 (mg kg−1)
Measured 3.3 1070 133 1860
Certified – 1114 151 2070
Recovery – 96% 88% 90%

BCSS-1 (mg kg−1)
Measured bLOD 15 18 110
Certified 0.25 18.5 22.7 119
Recovery – 81% 79% 92%
Aqua regiaa 0.29 17 17.9 93.5
Recovery – 88% 101% 117%

PACS-1 (mg kg−1)
Measured 2.5 397 358 767
Certified 2.38 452 404 824
Recovery 105% 88% 89% 93%
Aqua regia + H2O2

b – 380 294 726
Recovery – 104% 121% 106%
avoid the immediate proximity of mining works, while representing
to some extent plots with metal inputs predominantly derived from
short-range atmospheric deposition of past mining activities. The site
of Gien-sur-Cure is far from anymining activity and therefore presumed
to be affected only by anthropogenic deposition from distal or regional
sources. The colour of the soil horizons in each profile was determined
using the Munsell soil colour chart (Table 2). The soil at La Ruchette is
a Cambic Umbrisol (IUSS Working Group WRB, 2006). Two horizons
were sampled there: the A horizon, between 2.5 and 6 cm (RuA), and
the B horizon, from 6.5 to 36 cm in depth (RuB). The soil at Gien-sur-
Cure is a Cambisol (IUSSWorking Group WRB, 2006). Here, the A hori-
zon alone was collected, as it extends downward from 2.5 to 47 cm
(GiA). Each of these three bulk-horizon samples weighed several
kilogrammes, and was stored in a hermetic polyethylene bag. In the
laboratory, samples were air-dried, sieved to 2 mm, and carefully
quartered, but not ground, in order to preserve original field prop-
erties. Physico-chemical parameters such as particle size distribution
expressed in five fractions (0–2 μm, 2–20 μm, 20–50 μm, 50–200 μm,
and 200–2000 μm), C/N (using a Thermo NA-2000 CHN analyser), or-
ganic matter content (via loss-on-ignition at 550 °C), CaCO3 content
(using a Bernard calcimeter), pH (water medium with a 1:5, v:v,
ratio), and CEC (using cobaltihexamine extraction), were determined
at the INRA national soil analysis laboratory, COFRAC certified, using
standard AFNOR and ISO methods (AFNOR, 2004; more details about
procedures and quality control can be found at http://www5.lille.inra.
fr/las). This laboratory also measured total Cd and Pb contents by ICP-
MS (Thermo X7), and total Cu and Zn contents by ICP-AES (Varian
720), after total digestion byHNO3, HCl, andHF (ISO14869–1). Certified
reference materials and intra-laboratory reference soils routinely proc-
essed during each set of analyses, together with inter-laboratory
Lon 4.06425 3.95629
Lat 47.16339 46.91637

Soil horizon A1 A B
Label GiA RuA RuB
Depth (cm) 2.5–47 2.5–6 6.5–36
Coloura 7.5YR4/4 10YR4/5 7.5YR5/8
Soil typeb Cambisol Cambisol Cambisol

Particle size distribution (g kg−1)
Clay (b2 μm) 226 295 231
Fine silt (2–20 μm) 212 243 234
Coarse silt (20–50 μm) 66 110 107
Fine sand (50–200 μm) 75 82 86
Coarse sand (200–2000 μm) 421 269 342

C/N 16 18 22
OM (g kg−1) 87 136 39
CaCO3 (g kg−1) b1 b1 b1
pH (water medium) 4.7 4.2 4.5

Exchange capacity (cmol + kg−1)
CEC 5.0 8.6 4.5
Ca exch 0.06 0.44 0.08
Mg exch 0.12 0.34 0.07
Na exch 0.03 0.04 0.07
K exch 0.10 0.37 0.06
Fe exch 0.02 0.06 0.02
Mn exch 0.04 1.19 0.17
Al exch 4.59 6.30 4.26

Total metal (mg kg−1)
Cd 0.16 0.17 0.19
Cu 11.5 19.7 21.7
Pb 65.1 106.8 101.7
Zn 72 110.9 131.2

a Munsell soil colour chart.
b WRB (IUSS Working GroupWRB, 2006).
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Table 3
Descriptive statistics: min, median, mean, max and inter-quartile range for Cd, Cu, Pb and
Zn in the two sectors where topsoils were sampled. LOD stands for “limit of detection”.

Concentration (mg kg−1) Cd Cu Pb Zn

LOD 0.5 1 2 2

Sector: Gien-sur-Cure (n = 24)
Min. 0.5 2 34 35
Median 0.5 5.5 50 62
Mean 0.5 6.2 53 61
Max. 0.5 11 90 90
Inter-quartile range - 4.3 16 24

Sector: La Ruchette (n = 96)
Min. 0.5 6 41 31
Median 0.5 16 129 86
Mean 0.63 29 377 134
Max. 3.2 212 4520 835
Inter-quartile range - 18 177 60
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comparisons, indicate that deviations from expected values for Cd, Pb,
Cu and Zn do not exceed ±10%.

2.3. Kinetic extractions

The extraction protocol applied here is adapted from the methodol-
ogy described in Fangueiro et al. (2002). Metals were extracted from an
aliquot soil sample of 45 g in an initial volume of 450 mL of extracting
solution, composed of 0.05 mol L−1 Na2H2–EDTA, adjusted with
NaOH at pH = 6.5. The pH was checked at the end of the experiment
and ranged from 6 to 6.23. Such conditions guarantee a proper extrac-
tion process (Bermond et al., 2005). The mixture was continuously agi-
tated using an overhead shaker. At selected times of 4, 8, 12, 15, 20, 30,
45, 60, 90, 120, 150, 200, 250, 300, 500, and 1440 min, an aliquot of
2 mL was removed from the mixture with a syringe, and immediately
filtered through a Millipore syringe filter membrane of 0.45 μm, except
for the 1440-min solution, which was first centrifuged for 10 min at
4000 rpm, before filtration. The filtrates were kept in polyethylene
micro-tubes at 4 °C before elemental analysis. The entire operation
was reproduced twice for each soil-horizon sample.

Concentrations in Cu, Cd, Pb, and Zn were determined using a
Hitachi Z-5000 atomic absorption spectrometer. Zinc was measured
with an air–acetylene flame and a micro-sampling kit, while Cd, Cu,
and Pbwere determined by electrothermal atomic absorption spectros-
copy (ETAAS). A matrix modifier, (NH4)H2PO4, was used to overcome
possible matrix interferences (Abi-Ghanem et al., 2009). All reagents
were of analytical quality, from Merck. Water of high purity
(18 MΩ cm) was obtained from a Millipore apparatus. Each solution
was measured three times after the establishment of a calibration curve
absorbance = f(conc) with three standards. The final relative standard
deviation (RSD%) was generally below 10%. Blanks appeared to be insig-
nificant, whatever the metal measured, with respect to the elemental
composition of the solutions analysed, and did not require further correc-
tion. Lead isotopic compositions (206Pb/207Pb and 208Pb/206Pb ratios)
were measured for soil solutions sampled at 4, 8, 12, 15, 20, 45, 90, 150,
250, and 500 min, using a high resolution-inductively coupled plasma-
mass spectrometer (HR-ICP-MS) Element 2. Instrumental mass bias was
corrected by sample-standard bracketing techniques, using a NBS 981
lead solution as the bracketing standard (Monna et al., 1998, 2000). Pre-
cisions to the third decimal place are typically of 2–4 for 206Pb/207Pb
and 4–7 for 208Pb/206Pb ratios.

2.4. Kinetic modelling and data processing

Several models have previously been used to describe chemical ki-
netic behaviours (e.g. Bermond et al., 2005; Fangueiro et al., 2005; Yu
and Klarup, 1994). Among them, thewidely usedmultiple first-order re-
actions model is assumed to have a good physical meaning (Gutzman
and Langford, 1993):

QM tð Þ ¼ ∑n
i¼1QMi 1−e−λMit

� �
þ εr ð1Þ

whereQM(t) corresponds to the amount ofmetalM extracted perweight
unit at time t, and QMi the amount of the pool i per weight unit, which is
extracted following a decreasing rate, λMi. The term εt is the error. The
above equation is generally simplified as a two first-order reactions
model:

QM;i tð Þ ¼ QM1;i 1−e−λM1t
� �

þ QM2;i 1−e−λM2t
� �

þ εt;i ð2Þ

with here i = 1, 2 and t � [4, 8, 12, 15, 20, 30, 45, 60, 90, 120, 150, 200,
250, 300, 500, 1440] where, as previously defined by Fangueiro et al.
(2005), QM1 corresponds to the “labile”, readily extractable metal frac-
tion, associated to the constant λM1, and QM2 to the “less labile”, less
readily extractable metal fraction, associated to the constant λM2. The
term i corresponds here to the duplicates (i = 1 or i = 2).

To better perceive the relevance of this two first-order reactions
model, the variation in extraction rate (AM(t) [mg kg−1 min−1]) can
be plotted over time (cf. Labanowski et al., 2008, for details). Note that
QM(t) is linked to AM(t) as follows:

QM tð Þ ¼ ∫t

0
AM tð Þ d t: ð3Þ

Another important parameter is the amount ofmetal not extractable
by EDTA, QM3. It is simply obtained by:

QM3 ¼ Q tot−QM1−QM2 ð4Þ

whereQtot is the totalmetal concentration. Because the experimentwas
repeated twice, the values of QM1, QM2, λM1, λM2, were estimated using a
non-linear mixed model (Pinheiro et al., 2013), where the fixed effects
are the four parameters to be determined, and the random effects are
QM1i and QM2i (Eq. 2). Although the original sample was homogenised
by quartering, this precautionary measure served to eliminate all possi-
bility of inter-replicate heterogeneity.

Statistical treatment, including non-linear regression analysis, used
the free R software (R Development Core Team, 2008) with the nlme
package (Pinheiro et al., 2013). Graphics were generated using the
ggplot2 package (Wickham, 2009). Mapping was performed with
Quantum GIS free software (Quantum GIS Development Team, 2010).

3. Results

3.1. Mapping of trace-metal concentrations in topsoils

WhileminimumTM concentrations are comparablewhatever the site
studied: b0.5 mg kg−1 for Cd (LOD), ~5 mg kg−1 for Cu, ~35 mg kg−1

for Pb, and ~30 mg kg−1 for Zn, maximum contents are found in sub-
surface soils from La Ruchette (Table 3). This site also clearly exhibits
the greatest geochemical heterogeneity, as illustrated by inter-quartile
ranges (Table 3) and trace-metal spatial distributions (Fig. 3). Metal
concentrations in La Ruchette soils locally exceed maximum reference
limits, as defined in sludge-spreading regulations for France (France,
1998): 2 mg kg−1 for Cd, 100 mg kg−1 for Cu, 100 mg kg−1 for Pb
and 300 mg kg−1 for Zn. In contrast, metal contents in Gien-sur-Cure
soils are well below these limits, and correspond to assessed values
for non-polluted Cambisols: 0.08–1.61 mg kg−1 Cd, 7–140 mg kg−1

Cu, 1.5–70 mg kg−1 Pb, 9–362 mg kg−1 Zn (Kabata-Pendias, 2011).



Fig. 3. Spatial distribution of Cd, Cu, Pb and Zn concentrations in topsoils for Gien-sur-Cure and La Ruchette.
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3.2. Soil profiles and kinetic extractions

3.2.1. Physico-chemical characteristics of soil horizons
The three soil horizonsGiA, RuA and RuB, all sampled in a forest con-

text, are heterogeneous in terms of particle size (Table 2). These acid
soils, with no carbonate content, have a low pH (4.2–4.7) and are rich
in organic matter, with high C/N values, typical of forest stands. The ex-
change complex is predominantly compensated by Al3+ ions. At Gien-
sur-Cure, considered here as a reference area, totalmetal concentrations
in the A horizon are about 0.15 mg kg−1 for Cd, 12 mg kg−1 for Cu,
65 mg kg−1 for Pb and 72 mg kg−1 for Zn. In contrast, levels of total
trace metals in horizons A and B from La Ruchette are about
160–170% of those measured in the A horizon of Gien-sur-Cure, except
for Cd content which is fairly similar (Table 2).

3.2.2. Kinetic aspects
Extractedmetal amount per soil weight unit versus time exhibits the

expected pattern: first, rapid extraction, followed by a slower increase,
which may reach a plateau at the end of the experiment (Fig. 4). Inter-
estingly, similar results are obtained for both replicates, whatever the
horizon or metal studied (most of the time ±10% maximum, see
Figs. 4 and 5). Although pH values remained stable throughout the ex-
periment, the final 1440-min points often lay outside the trends defined
by the other time points and were therefore not included in further



Fig. 4.Amount ofmetal extracted vs. time. Each point shows themean value for the three AASmeasurements. Crosses showmean value for kinetic extraction duplicates. Dashed grey lines
represent best fitted models.
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Fig. 6. Distribution of Cd, Cu, Pb and Zn expressed as QM1, QM2 and QM3 (in mg kg−1 soil)
for each soil studied. The corresponding fractions FM1, FM2, and FM3 (in %) are also
indicated.

Fig. 7. 208Pb/206Pb vs. 206Pb/207Pb ratios in soil-horizon kinetic solutions (circles). Stars
correspond to local ores reported in Marcoux (1986). Crosses represent some galena dis-
covered during soil sampling and measured by HR-ICP-MS (Camizuli, unpublished data).
Other potential sources: local background (Lévêque et al., 2002;Monna et al., 2004), incin-
erator fly ash and leaded gasoline (Monna et al., 1997) are also plotted for comparison.
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treatments. The fraction ofmetal extracted at the end of the experiment
was always less than 60%, and often below 25%, of total metal concen-
trations (Fig. 6).

3.2.3. Stable lead isotopes
Each soil horizon is clearly different in terms of lead isotopic compo-

sition, as measured in soil extracts (Fig. 7): La Ruchette, A horizon
(206Pb/207Pb = 1.165–1.166, 208Pb/206Pb = 2.096–2.100); La Ruchette,
B horizon (206Pb/207Pb = 1.175–1.180, 208Pb/206Pb = 2.085–2.089);
Gien-sur-Cure, A horizon (206Pb/207Pb = 1.194–1.199, 208Pb/206Pb =
2.064–2.070). These data are shown in a 208Pb/206Pb vs 206Pb/207Pb dia-
gram, togetherwithmain potential lead sources: French leaded gasoline
before lead was banned and incinerator fly ash (Monna et al., 1997),
local galena ores (Marcoux, 1986 and present study), local geological
background assessed from deep, non-contaminated forest soil horizons
(Lévêque et al., 2002) and a pre-anthropogenic peat sequence (Monna
et al., 2004). It is worth noticing that no temporal evolution in terms
of lead isotopic composition was observed during the extraction exper-
iment (Fig. 8).

4. Discussion

4.1. Spatial distribution of metals

It is not surprising to see higher trace-metal levels and greater spa-
tial heterogeneity at La Ruchette, because mining took place at that
site, but not at Gien-sur-Cure (Fig. 3). Although known to have been
mined at least for iron, La Ruchette has also been recognised as a natu-
rally rich polymetallic district (Gourault et al., 2012). An iron ore
Fig. 5. Rate of metal extraction vs. time. Removal rates were calculated using the amou
Dashed grey lines represent best fitted models.
collected in the south of the grid (Fig. 3) yielded high TM contents
reaching ~100 mg kg−1 Pb, ~1000 mg kg−1 Cu, and 750 mg kg−1 Zn
(Camizuli, unpublished data). It should nonetheless be noticed that
high TM contents do not perfectly match mining works, perhaps be-
cause zones of past mining or metallurgy remain undiscovered, either
in the study area or close by.

4.2. Kinetic modelling

Whatever the metal and corresponding soil horizon, AM(t) clearly
defines two linear segments with different and non-null intercepts
and slopes (Fig. 5), demonstrating that the model described in Eq. 2 is
suitable. This two first-order reactions model was statistically validated
whatever the soil and metal studied. The R2 values were higher than
0.92 (Table 4), and regression estimates were significantly non-null
(p b 0.05, Fig. 4). Note that tests performed using a third exponential
term and including the 1440-min point were not significant.

For thismodel, theλM1 values for theA horizons studied (i.e. GiA and
RuA) are close (Table 4).Whatever themetal, the λM1 values are always
smaller in the RuA horizon: 0.12–0.15 min−1 than in the RuB horizon:
0.24–0.54 min−1. In other words, the labile pool in RuB is removed
faster than that of the overlying horizon, RuA. This suggests a funda-
mental difference in the nature of the groups rendering the metals as
supported by the soil properties. RuA has the highest clay and organic
matter contents, andmost metals are probably held by the oxides or or-
ganically bound (Table 2). The differences in exchangeable cation pools
also highlight the different nature of the implicated groups. The trend,
from the highest to the lowest λM1 values, generally found in the litera-
ture (i.e. Cd N Zn N Cu N Pb, Wasay et al., 2007), is more or less ob-
served here as Cd extracts faster: Cd N Zn ~ Cu ~ Pb at GiA and at RuB,
while no difference can be noticed in RuA. For all samples, Cd presents
the highest fraction associated to the fast leaching reaction (FM1) dem-
onstrating the high availability of this element. Cd and Zn are generally
bound to the exchangeable fraction, unlike Pb and Cu, which are usually
nt of metal extracted. Crosses show mean value for kinetic extraction duplicates.



Fig. 8. Time variation of 206Pb/207Pb ratios in soil-horizon kinetic solutions (circles). Error
bars are given at 95% confidence level. Grey line represents themean 206Pb/207Pb ratios for
each profile.
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bound to organic matter or oxides (Manouchehri et al., 2011;
Labanowski et al., 2008; Gandois et al., 2010; Santos et al., 2010). The
λM2 values, which range from 10−3 to 2 · 10−2 min−1, are about 1 to
2 orders of magnitude smaller than the corresponding λM1 values.
These values are compatible with results from previously published
studies performed under similar chemical conditions, but focusing on
different types of material: coastal sediments (Abi-Ghanem et al.,
2009; Fangueiro et al., 2005) and agricultural soils (Bermond et al.,
2005; Labanowski et al., 2008; Santos et al., 2010).

For Cd, Pb and Zn, the “labile” and “less labile” pools (i.e. QM1 and
QM2) are similar for all soil horizons (Table 4). However, for Cu, QM2 is
significantly higher than QM1 (QM2/QM1 ~ 2–10, Table 4). For all metals,
the amount of non-extractable metal (QM3) is much higher than QM1 or
QM2 alone, and is also higher thanQM1 + QM2, except for Cd in the A ho-
rizon at Gien-sur-Cure (GiA). At La Ruchette (RuA and RuB), while total
concentrations (Qtot) are similar in both soil horizons, the amount of
Table 4
Kinetic parameters: λi and amounts, QMi, of metal extracted with EDTA per kg of soil defined
values, total metal concentrations: Qtot, amount of metal non-extracted: QM3, and proportion o

λM1

(min−1)
sd λM2

(min−1)
sd QM1

(mg kg−1)
sd QM2

(mg kg−1)
sd

Cd
GiA 0.349 0.096 0.021 0.003 0.042 0.003 0.048 0.
RuA 0.126 0.019 0.009 0.004 0.031 0.003 0.011 0.
RuB 0.543 0.086 0.008 0.001 0.025 0.001 0.018 0.

Cu
GiA 0.140 0.025 0.0022 0.0002 0.246 0.016 2.57 0.
RuA 0.142 0.035 0.0044 0.0002 0.218 0.024 1.96 0.
RuB 0.237 0.031 0.0049 0.0004 0.448 0.018 1.01 0.

Pb
GiA 0.150 0.013 0.0065 0.0005 5.3 0.2 7.2 0.
RuA 0.118 0.008 0.0055 0.0004 15.1 0.5 22.4 0.
RuB 0.288 0.032 0.0063 0.0005 8.2 0.2 12.1 0.

Zn
GiA 0.121 0.012 0.0016 0.0008 1.11 0.04 1.8 0.
RuA 0.148 0.013 0.0064 0.0012 2.6 0.1 1.7 0.
RuB 0.347 0.033 0.0053 0.0006 0.74 0.02 0.75 0.
non-extractable metal in the A horizon (QM3) is always less than that
in the underlying B horizon (Fig. 6); this is particularly true for lead.

Although EDTA is known to be a powerful reagent for trace-element
extraction (Bermond et al., 1998), in this study, it is the residual, non-
extractable fraction (FM3) which always predominates, varying from
44% to 77% for Cd, 76% to 93% for Cu, and 65% to 80% for Pb (Fig. 6).
Even more surprisingly, the highest residual fractions were found for
Zn (96–99%), which is supposed to be a rather mobile metal (Citeau
et al., 2003; Fernandez et al., 2010; Sun et al., 2001). In a study of agricul-
tural soils, contaminated more recently, residual fractions (FM3) ranged
from 40% to 55% for Zn and Cu, and from 10% to 15% for Pb and Cd
(Labanowski et al., 2008). In the forest soils studied here, the lower pro-
portion ofmetals extracted can be explained by various complementary
processes. Generally, the fraction most easily extracted by reagents is
thought to be mainly of anthropogenic origin, because its binding asso-
ciation with soil constituents is often lower than for metals of natural
origin. In view of the acid soil conditions (pH ~ 4.5) here, these atmo-
spherically deposited metals, mainly of anthropogenic origin, may
have partly percolated over time, in a dissolved form, through the soil
profile to depths below the horizons studied (Ettler et al., 2012;
Gandois et al., 2010; Hernandez et al., 2003; van Oort et al., 2009). The
cation-exchange capacity of the soils in this study indicates that the
soil matrix is not available for exchange with the soil solution. Alumin-
ium takes up a large amount of charge in the CEC (Table 2) and hence
prevents the fixation of other elements like divalent ions (Pb, Cd, Cu,
Zn). Consequently, the predominant metal pool today corresponds to
ametal fraction strongly bound to soil particles. Besides, the contamina-
tion is mostly ancient, and organic matter is present at high levels in
these forest soils. These conditions may have prevented metal leaching
due to the formation of stable organo-metallic complexes over time, as
previously suggested by Labanowski et al. (2007). Moreover, to some
extent, TMsmaymigrate to depthwhen associated to particulate organ-
ic matter (POM) or iron colloids (Citeau et al., 2003; van Oort et al.,
2006).

Stable lead isotopes might help to understand better the origin of the
lead forming the two pools. The lead isotope signatures of the soil-
horizonkinetic solutions are incompatiblewith leadedgasoline sold before
Pb was phased out (206Pb/207Pb = 1.067–1.094 in 1995; Fig. 7), and too
radiogenic to be mainly affected by modern industrial sources, previously
estimated on fly ash from incinerators (206Pb/207Pb = 1.142–1.155). The
206Pb/207Pb ratios (206Pb/207Pb = 1.165–1.166) for the A horizon kinetic
solution from La Ruchette are below the values for the small number of
measurements available for local Pb ores (206Pb/207Pb = 1.172–1.189).
by the two-first-order reactions model (together with associated standard deviation), R2

f metals in each QMi pool: FMi, sd stands for standard deviation of regression estimates.

R2 Qtot

(mg kg−1)
QM3

(mg kg−1)
QM2/QM1 FM1 (%) FM2 (%) FM3 (%)

003 0.970 0.16 0.07 1.14 26 30 44
004 0.924 0.17 0.13 0.35 18 7 75
001 0.973 0.19 0.15 0.72 13 10 77

12 0.998 11.5 8.7 10.4 2 22 76
04 0.998 19.7 17.5 8.99 1 10 89
03 0.993 21.7 20.2 2.25 2 5 93

5 0.995 65.1 52.6 1.36 8 11 81
6 0.997 107 69.2 1.48 14 21 65
4 0.990 102 81.5 1.48 8 12 80

6 0.979 72 69.1 1.62 2 2 96
1 0.984 111 107 0.65 2 2 96
04 0.987 131 130 1.01 0.5 0.5 99
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However, the study of atmospheric deposition archived in a peat sequence
sampled at Port-des-Lamberts, located only 7 km from the mining site of
La Ruchette (Fig. 1), described ancient anthropogenic inputs related to
local mining and metallurgy, characterised by isotopic 206Pb/207Pb ratios
ranging from1.160 to 1.180 (Monna et al., 2004). At La Ruchette, sampling
was undertaken in a relatively elevated zone, avoiding mining works, so
that any anthropogenic input must be of atmospheric origin, and not
from liquid urbanwaste. As a result, lead isotopic compositions mea-
sured in the A horizon of La Ruchette are driven (i) mainly by local
mining/metallurgy, with 206Pb/207Pb ratios probably ranging from
1.160 to 1.180, (ii) diffuse and minor human-derived modern inputs
characterised by faintly radiogenic signatures (e.g. leaded gasoline),
and (iii) lead naturally present in soils, with high 206Pb/207Pb ratios
of ~1.20–1.21. The anthropogenic lead present in the B horizon
(RuB) must have slowly migrated downwards from the A horizon.
The anthropogenic contribution is nonetheless below that of the RuA ho-
rizon. As a result, lead isotopic signatures are more radiogenic in RuB
(206Pb/207Pb = 1.175–1.180) than in RuA (206Pb/207Pb = 1.165–1.166).
At Gien-sur-Cure, far from any local mining works, lead is predominantly
of natural origin, as shownby 206Pb/207Pb ratios between1.194 and 1.199,
close to the background signature level (206Pb/207Pb ~ 1.20–1.21; Fig. 7).

These findings indicate that each of the soil horizons contains lead
from many different sources in various proportions. It would have
been tempting to consider a “labile” pool mainly composed of lead of
anthropogenic origin, because this type of lead is known to be less
strongly bound than the natural lead present in the lattice network of
minerals (Erel et al., 1997; Steinmann and Stille, 1997; Teutsch et al.,
2001). One possible hypothesis could be that after the first “labile”
pool has been rapidly extracted (λM1 ≫ λM2), natural lead would pre-
dominate in the “less labile” second pool, resulting in more radiogenic
values over time, during the experiment. In our case, this pattern does
not apply because no such temporal evolution of lead isotopic ratios
was observed (Fig. 8). The kinetic extraction of trace metals from soils
provides no information as to their origin, except by demonstrating a
blend of sources. The two pools identified probably correspond to
metals trapped by different kinds of particles.

5. Conclusion

For both the non-contaminated soil horizon and the profile of the
soil affected by historical mining, at least since Prehistory, kinetic ex-
tractions ofmetalswere successfullymodelled by a twofirst-order reac-
tions model. All metals studied here exhibit approximately the same
kinetic behaviour. In mining contexts, more metals are extracted from
the topsoil than from the underlying horizon, although total concentra-
tions are similar. The B horizon of La Ruchette presents notably higher
λM1 values for all metals than the A horizon, highlighting a more rapid
kinetic extraction of the first pool. The “labile” and “less labile” pools
of Cu, Pb, Zn, and Cd represent only a small fraction of the total metal
content in soil (assessed by total digestion). Two hypotheses are there-
fore proposed: (i) binding to soil particles, possibly as organo-metallic
complexes, is strong, more particularly in the B horizon or, (ii) past an-
thropogenic inputs have been partly leached through the soil profiles
because of the acidic soil pH. These two processes are not mutually ex-
clusive. Stable lead isotopes do not allow the origins of the lead present
in the two pools of a given soil horizon to be differentiated. Both pools in
the same soil horizonwill have the same isotopic composition, resulting
from a blend of sources, yet they will present different kinetic behav-
iours. However, each soil horizonwill have a different isotopic composi-
tion, because of its contamination history, and the intrinsic parameters
controlled by post-depositional processes. Traces of past mining and
metallurgy may persist in soils long after such activities have ceased.
However, at least in the forest soils studied here, the low TM lability
shown through kinetic extractions suggests that trace metals should
not represent a threat for biota. Results only concern two specific soils,
one of them sampled in an area presenting a high geochemical spatial
heterogeneity. This study should not therefore be viewed as a work
allowing the fate of metals to be understood at the scale of the Morvan,
but as an exploratory study to evaluate the interest of combining kinetic
extraction in soil horizons and lead isotopic measurements in a past
mining context. It should also be mentioned that such an approach is
costly and time consuming, so that it cannot be routinely employed.
However, it clearly demonstrates the pertinence of integrating archaeo-
logical knowledge into the environmental sciences. Historical mining
sites like those investigated here can be used as powerful proxies to
model the impacts of present-day societies on the surrounding environ-
ment and to forecast the long-term fate of metals in soils.
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