COMP. K GROUPES

ANOVA et assimilés

ANOVA: Plan du Cours

Introduction : comparaisons multiples Analyse de variance à 1 facteur

- 1. Principe de l'ANOVA 1 facteur
 - 1.1 Définitions : dispersion, variance
 - 1.2 Sources de variabilité
 - 1.3 F-ratio et test de H0

2. Formalisation de l'ANOVA 1 facteur

- 2.1 Système de notation
- 2.2 Décomposition de la variance
- 2.3 Test de H0
- 3. Conditions d'application
- 4. Deux modèles d'ANOVA
- 5. Tests a posteriori

Alternatives non-paramétriques

Comparaison de plus de 2 moyennes

Exemple: 3 groupes

$$H_0: \mu_1 = \mu_2 = \mu_3$$

Option 1 : multiple *t*-tests
$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_0: \mu_1 = \mu_3 \\ H_0: \mu_2 = \mu_3 \end{cases}$$

Problèmes:

- laborieux : k(k-1)/2 comparaisons avec k groupes

- <u>inadapté</u>: augmentation du risque α (α = 0.14 avec 3 groupes)

Comparaison de plus de 2 moyennes

Exemple: 3 groupes

$$H_0: \mu_1 = \mu_2 = \mu_3$$

Option 1 : multiple *t*-tests

$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_0: \mu_1 = \mu_3 \\ H_0: \mu_2 = \mu_3 \end{cases}$$

Correction du seuil de significativité

Correction pour comparaisons multiples

Tests multiples:

- m hypothèses nulles
- chacune est déclarée soit significative soit non-signicative

	H ₀ vraie	H ₀ fausse	TOTAL
déclarée significative	V	S	R
déclarée non-significative	U	T	m - R
Total	m_0	m - m_0	m

m : nombre total d'hypothèses testées

 m_0 : nombre d'hypothèses nulles vraies

V : nombre de faux positifs (erreur de type I)

S : nombre de vrais positifs

U : nombre de vrais négatifs

T : nombre faux négatifs (erreur type II)

R : nombre d'hypothèses nulles rejetées

Q : proportion de fausses découvertes

$$Q = \frac{V}{R}$$

Correction pour comparaisons multiples

Quantités à contrôler :

- FWER : familywise error rate
- FDR = E[Q] : false discovery rate

	H ₀ vraie	H ₀ fausse	TOTAL
déclarée significative	V	S	R
déclarée non-significative	U	T	m - R
Total	m_0	m - m_0	m

$$FWER = \Pr(V \ge 1) \le \alpha$$

ullet contrôle de la probabilité de faire au moins 1 erreur de type I à un risque lpha

Correction pour comparaisons multiples

Si les tests sont indépendants, alors

$$\alpha = 1 - (1 - \gamma)^m$$
 γ : le risque d'erreur de type I de chaque test si $\gamma = 5\%$ et $m = 3$ alors $\alpha = 0.14$

Si il existe une dépendance entre les tests, alors

$$\alpha < m \times \gamma$$
 si $\gamma = 5\%$ et $m = 3$ alors $\alpha = 0.15$

Procédures de contrôle du *FWER* et correction du seuil de significativité de chaque test:

Bonferroni:
$$\gamma = \alpha/m$$

Šidák:
$$\gamma = 1 - (1 - \alpha)^{1/m}$$

Tukey HSD: voir cours

Holm (Bonferroni sequentiel):
$$\gamma_i = \alpha/(m-i+1)$$

Comparaison de plus de 2 moyennes

Exemple: 3 groupes

$$H_0: \mu_1 = \mu_2 = \mu_3$$

Option 1: multiple *t*-tests

 \longrightarrow

+ Correction seuil de significativité

$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_0: \mu_1 = \mu_3 \\ H_0: \mu_2 = \mu_3 \end{cases}$$

Option 2 : Analyse de variance (ANOVA)

 $\begin{cases} H_0: \mu_1 = \mu_2 = \dots = \mu_k \\ H_1: \text{tous les moyennes ne sont pas} \end{cases}$

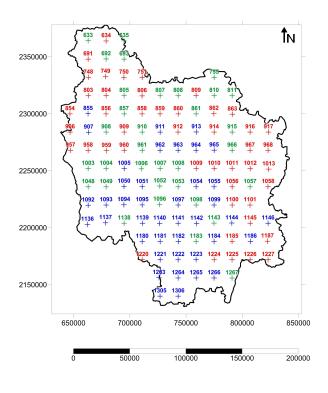
ANOVA

Analyse of Variance

ANOVA 1 facteur / One-way ANOVA

Principe de l'ANOVA

Exemple : Effet de la nature de l'occupation des sols en Bourgogne sur leur composition isotopique (δ^{13} C)



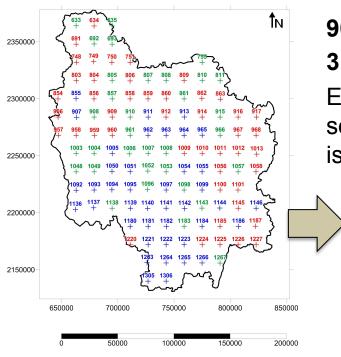
90 sols échantillonnés

3 types d'occupation : Prairie, Champs, Forêt

Example : Effet de la nature de l'occupation des sols en Bourgogne sur leur composition isotopique (δ^{13} C)

Principe de l'ANOVA

Exemple : Effet de la nature de l'occupation des sols en Bourgogne sur leur composition isotopique (δ^{13} C)



90 sols échantillonnés

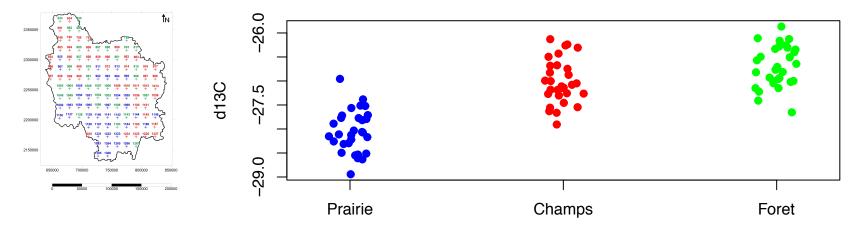
3 types d'occupation : Prairie, Champs, Forêt

Example : Effet de la nature de l'occupation des sols en Bourgogne sur leur composition isotopique (δ^{13} C)

Prairie	Champs	Forêt
-28.15	-26.13	-26.11
-28.54	-27.27	-27.04
-27.51	-27.54	-26.50
-27.76	-27.00	-27.01
-28.03	-26.42	-26.94
-27.71	-27.45	-27.65
-28.25	-27.62	-27.22
-27.88	-27.30	-26.16

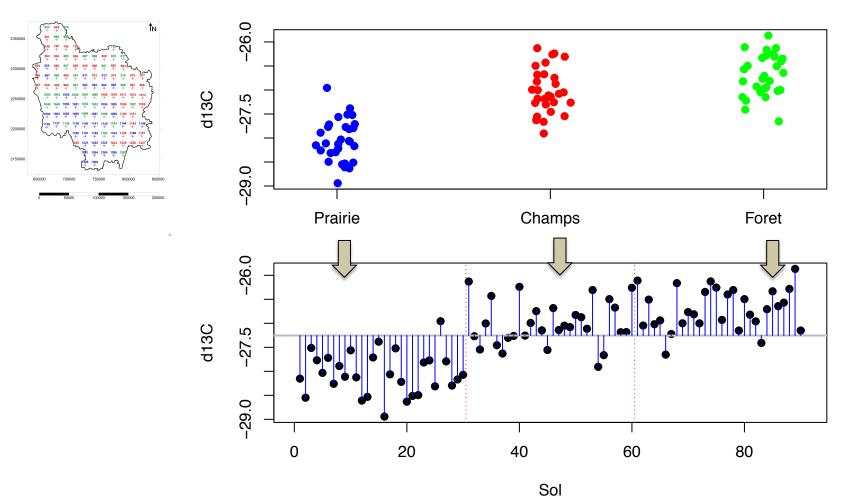
Principe de l'ANOVA

Exemple : Effet de la nature de l'occupation des sols en Bourgogne sur leur composition isotopique (δ^{13} C)



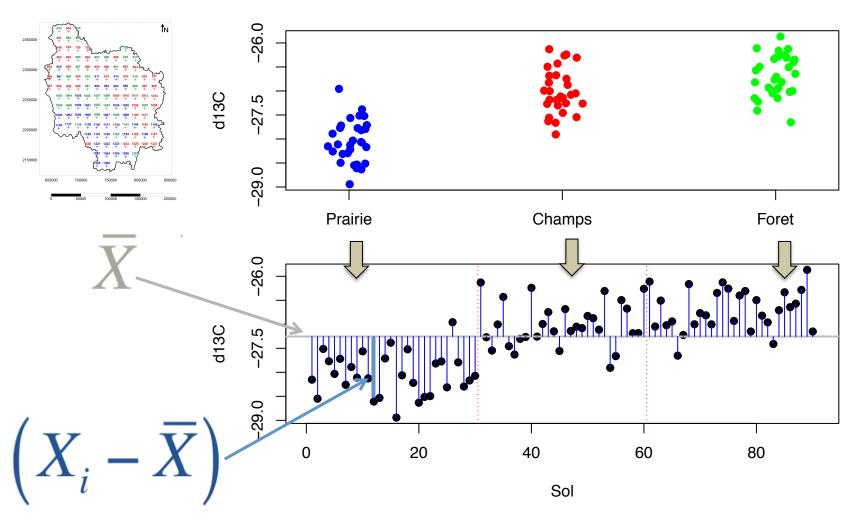
Principe de l'ANOVA

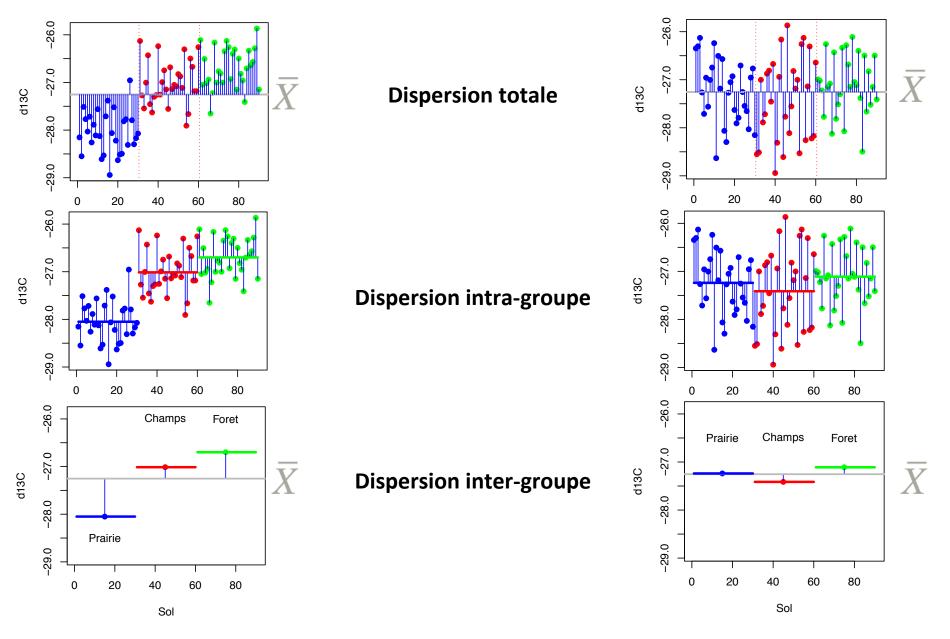
Exemple : Effet de la nature de l'occupation des sols en Bourgogne sur leur composition isotopique (δ^{13} C)



Principe de l'ANOVA

Exemple : Effet de la nature de l'occupation des sols en Bourgogne sur leur composition isotopique (δ^{13} C)





ANOVA 1 facteur – Principe / Source de variabilité

Impossible

de comparer directement les dispersions intra-groupe et inter-groupe

Comparaison des variances : « Carrés moyens »

Carré moyen = Somme des carrés / degré de liberté

Rappel:

Nombre de **degrés de liberté** = nombre d'unités d'information utilisées pour calculer une statistique

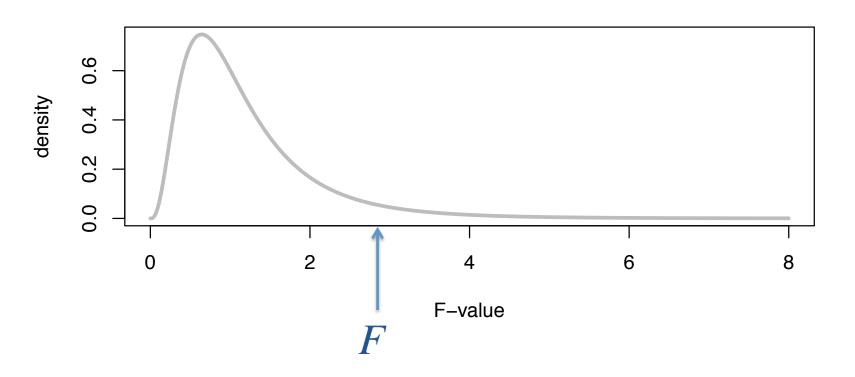
Test de l'hypothèse nulle

Comparaison des variances : « Carrés moyens »

Calcul du F-ratio:
$$F = \frac{V_I}{V_E}$$

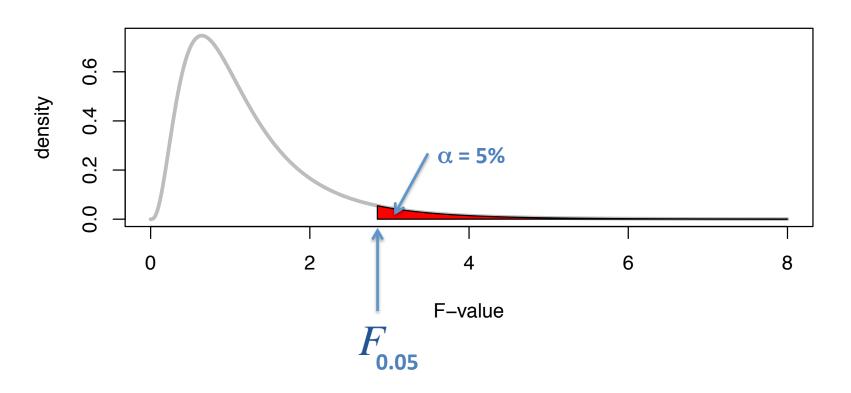
ANOVA 1 facteur – Principe / F-ratio

Distribution du F



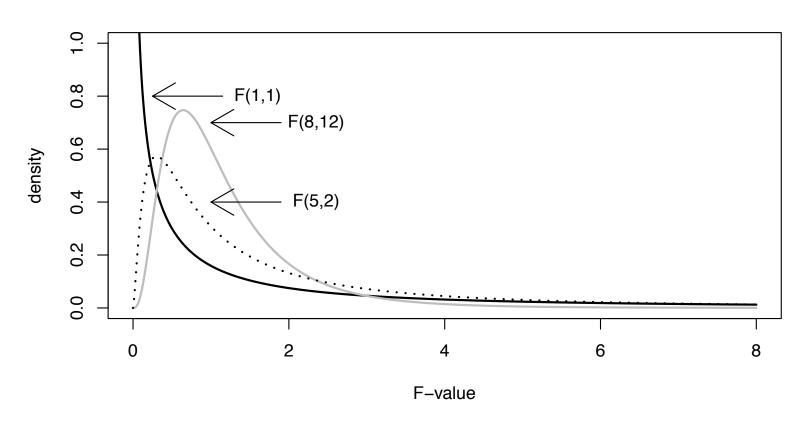
ANOVA 1 facteur – Principe / F-ratio

Distribution du F



ANOVA 1 facteur – Principe / F-ratio

Distribution du F



Elle dépend des nombres de degrés de liberté associés à v_{I} et v_{E}

ANOVA 1 facteur

Formalisation

Système de notation / Décomposition de la variance / Test de H0

ANOVA 1 facteur – Formalisation / Système de notation

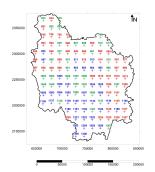
Système de Notation

Groupes

				-		
obs.	1	2	• • •	j	• • •	k
1	$x_{1,1}$	$x_{1,2}$	•••	$\mathcal{X}_{1,j}$	•••	$\mathcal{X}_{1,k}$
2	$x_{2,1}$	$x_{2,2}$	• • •	$\mathcal{X}_{2,j}$	• • •	$x_{2,k}$
÷	:	•	•••	•	•••	•
i	$X_{i,1}$	$X_{i,2}$	• • •	$\mathcal{X}_{i,j}$	•••	$X_{i,k}$
:	:	•	٠.	•	٠.	•
n_{j}	$X_{n_1,1}$	$X_{n_2,2}$	•••	$X_{nj,j}$	•••	$X_{n_1,k}$
Effectifs	n_1	n_2	•••	n_{j}	•••	n_{k}
Totaux	T_1	T_2	•••	T_{j}	• • •	T_{k}
Moyennes	\overline{x}_1	\overline{x}_2	•••	$\overline{\mathcal{X}}_j$	•••	$\overline{\mathcal{X}}_k$

ANOVA 1 facteur – Formalisation / Système de notation

<u>Exemple</u>: Comparaison de la composition isotopique du carbone de 3 types d'occupation du sol en Bourgogne



Prairie	Champs	Forêt	
-28.15	-26.13	-26.11	
-28.54	-27.27	-27.04	
-27.51	-27.54	-26.50	
-27.76	-27.00	-27.01	
-28.03	-26.42	-26.94	
-27.71	-27.45	-27.65	
-28.25	-27.62	-27.22	
-27.88	-27.30	-26.16	
. j 8	8	8	
j -223.83	-216.73	-214.63	-655.19
j -27.98	-27.09	-27.83	-27.30

Calcul des variances intra- et inter-groupes

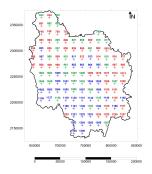
			Gr	oupes		
obs.	1	2		j		k
1	<i>X</i> _{1,1}	<i>X</i> _{1,2}		$X_{1,j}$		$X_{1,k}$
2	$x_{2,1}$	$x_{2,2}$	•••	$x_{2,j}$	•••	$x_{2,k}$
÷	1	:	٠.	÷	٠.	:
i	$X_{i,1}$	$X_{i,2}$	• • •	$X_{i,j}$	•••	$X_{i,k}$
i l	1	:	٠.	:	٠.	:
n_{j}	$X_{n_1,1}$	$X_{n_2,2}$	•••	$X_{nj,j}$	•••	$X_{n_1,k}$
Effectifs	n_1	n_2		n_{j}	•••	n_{k}
Totaux	T_1	T_2		T_{j}		T_{k}
Moyennes	\overline{X}_1	\overline{X}_2	•••	\overline{X}_j		\overline{X}_k

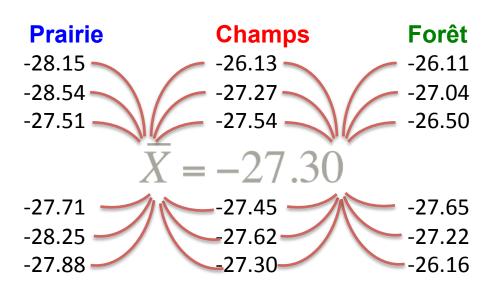
Dispersion totale:
$$SCT = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \overline{X})^2$$

$$\frac{OU}{SCT} = \sum_{i=1}^{k} \sum_{j=1}^{n_j} (x_{ij}^2 - \frac{T^2}{n})$$

Variance totale:
$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{X})^2}{n-1} = \frac{SCT}{n-1}$$

<u>Exemple</u>: Comparaison de la composition isotopique du carbone de 3 types d'occupation du sol en Bourgogne





Dispersion totale

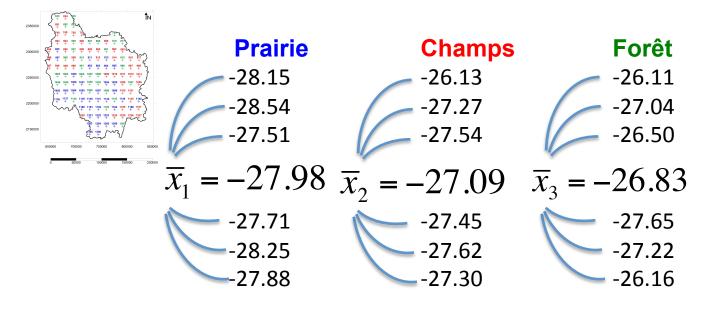
$$SCT = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \overline{X})^2$$

Calcul de la variance intra-groupe

Dispersion intra-groupe:

Variance intra-groupe:
$$V_E = \frac{SCE}{v_E} = \frac{SCE}{n-k}$$

<u>Exemple</u>: Comparaison de la composition isotopique du carbone de 3 types d'occupation du sol en Bourgogne



Dispersion intra-groupe

$$SCE = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \overline{x}_j)^2$$

Calcul de la variance inter-groupe

Dispersion inter-groupe:

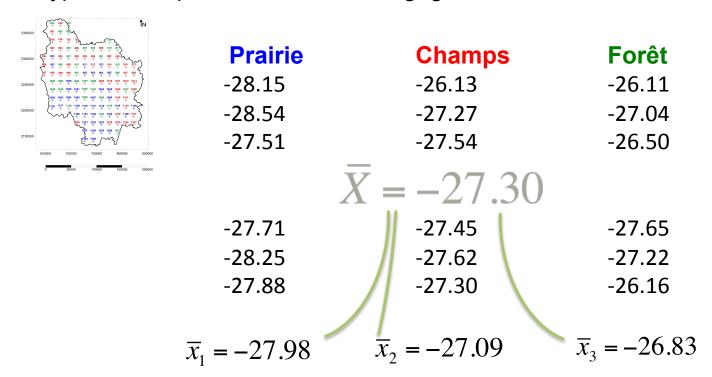
			Gr	oupes		
obs.	1	2		j		k
1	<i>X</i> _{1,1}	<i>X</i> _{1,2}		$X_{1,j}$		$X_{1,k}$
2	$x_{2,1}$	$x_{2,2}$	•••	$x_{2,j}$	•••	$X_{2,k}$
÷	1	:	٠.	:	٠.	:
i	$X_{i,1}$	$X_{i,2}$	•••	$X_{i,j}$	•••	$X_{i,k}$
÷	1	÷	٠.	÷	٠.	:
n_{j}	$X_{n_1,1}$	$X_{n_2,2}$		$X_{nj,j}$	•••	$X_{n_1,k}$
Effectifs	n_1	n_2		$n_{_j}$		n_{k}
Totaux	T_1	T_2		T_{j}	•••	$T_{\scriptscriptstyle k}$
Moyennes	\overline{X}_1	\overline{X}_2	•••	\overline{X}_{j}		\overline{X}_k

$$SCI = \sum_{j=1}^{k} n_j \left(\overline{x}_j - \overline{X}\right)^2$$

$$\underline{OU}$$

$$SCI = \sum_{j=1}^{k} \frac{T_j^2}{n_j} - \frac{T^2}{n}$$

<u>Exemple</u>: Comparaison de la composition isotopique du carbone de 3 types d'occupation du sol en Bourgogne



Dispersion inter-groupe

$$SCI = \sum_{j=1}^{k} n_j \left(\overline{x}_j - \overline{X} \right)^2$$

Tableau d'ANOVA

Source	SS (dispersion)	ddl	MS (Variance)
Inter-groupe (Facteur)	$\sum_{j=1}^{k} n_j \left(\overline{x}_j - \overline{X} \right)^2$	k – 1	$\sum_{j=1}^{k} n_{j} \left(\overline{x}_{j} - \overline{X} \right)^{2} / (k-1)$
Résiduelle (Erreur; Intra-group)			$\left \sum_{j=1}^{k} \sum_{i=1}^{n_j} \left(x_{ij} - \overline{x}_j \right)^2 \middle/ \left(n - k \right) \right $
Totale	$\sum_{j=1}^k \sum_{i=1}^{n_j} \left(x_{ij} - \overline{X} \right)^2$	n-1	$\sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \bar{X})^2 / (n-1)$

Rappel:

Nombre de **degrés de liberté** associé à 1 calcul est le nombre de ses composantes indépendantes, i.e. le nombre de composantes de base du calcul moins le nombre de relations (paramètres) qui lient celles-ci

Tableau d'ANOVA

Source	SS (dispersion)	ddl	MS (Variance)
Inter-groupe (Facteur)	SCI = 5.81	k-1=2	$MS_{InterGpe} = 2.90$
Résiduelle (Erreur; Intra-group)	SCE = 4.83	n-k=21	$MS_{Erreur} = 0.23$
Totale	SCT = 11.10	n-1=23	$s^2 = 0.46$

Tableau d'ANOVA

Source	SS (dispersion)	ddl	MS (Variance)
Inter-groupe (Facteur)	SCI = 5.81	k-1=2	$MS_{InterGpe} = 2.90$
Résiduelle (Erreur; Intra-group)	SCE = 4.83	n-k=21	$MS_{Erreur} = 0.23$
Totale	SCT = 11.10	n-1=23	$s^2 = 0.46$
<u>Important !!</u>	SCI + SCE = SCT	$v_I + v_E = v_T$	$\frac{MAIS !!}{MS_I + MS_E} \neq s^2$

Expected Mean Squares

Source	MS	E[MS _{Facteur à effet fixe}]
Inter-groupe (Facteur)	$MS_{l} = SCI/(k-1)$	$\sigma_{\varepsilon}^2 + \sum_{j=1}^k n_j \frac{\alpha_j^2}{k-1}$
Résiduelle	$MS_E = SCE/(n-k)$	$\sigma_{_{arepsilon}}^{2}$

ANOVA 1 facteur – Formalisation / Test de H0

Hypothèses:

$$\begin{cases} H_0: \mu_1 = \mu_2 = \dots = \mu_k = \mu \\ H_1: \text{tous les moyennes} \end{cases} \qquad \alpha_i = \mu_i - \mu: \begin{cases} H_0: \alpha_1 = \alpha_2 = \dots = \alpha_k = 0 \\ H_1: \text{tous les niveauxont} \end{cases}$$
 sont pas égales

Si 1) <u>normalité des données</u> et 2) <u>homogénéité des variances</u> entre les *k groupes*

Alors, si H0 est vraie (même moyenne dans tous les populations), la variance globale σ^2 de la population peut être estimée de 2 façons :

- 1) Variance intra-groupe (MS_E) = moyenne pondérée des variances des k groupes
- 2) Variance inter-groupe (MS_I)

ANOVA 1 facteur – Formalisation / Test de H0

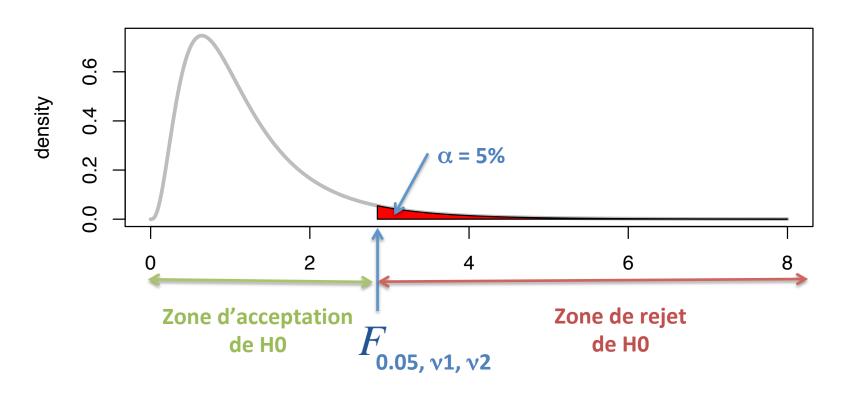
Rapport des variances F

Ainsi, puisque
$$E[MS_I] = \sigma_{\varepsilon}^2 + \sum_{j=1}^k n_j \frac{\alpha_j^2}{k-1} etE[MS_E] = \sigma_{\varepsilon}^2$$

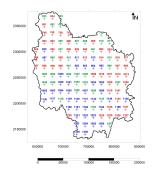
si H0 vraie
$$\longrightarrow$$
 MS_I = MS_E $F = \frac{MS_I}{MS_E} \approx 1$
si H0 fausse \longrightarrow MS_I > MS_E $F = \frac{MS_I}{MS_E} > 1$

F suit une loi de Fisher-Snedecor à v_1 et v_2 degrés de liberté

Distribution du F et zone de rejet de H0



<u>Exemple</u>: Comparaison de la composition isotopique du carbone de 3 types d'occupation du sol en Bourgogne



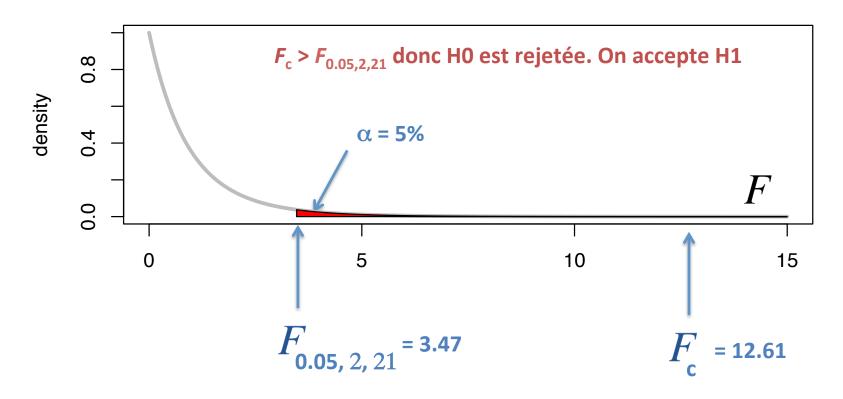
Prairie	Champs	Forêt
-28.15	-26.13	-26.11
-28.54	-27.27	-27.04
-27.51	-27.54	-26.50
-27.76	-27.00	-27.01
-28.03	-26.42	-26.94
-27.71	-27.45	-27.65
-28.25	-27.62	-27.22
-27.88	-27.30	-26.16

Calcul du F-ratio

Source	SS (dispersion)	ddl	MS (Variance)
Inter-groupe (Facteur)	SCI = 5.81	k-1=2	$MS_{InterGpe} = 2.90$
Résiduelle (Erreur; Intra-group)	SCE = 4.83	n-k=21	$MS_{Erreur} = 0.23$
Totale	SCT = 11.10	n-1=23	$s^2 = 0.46$

$$F_c = \frac{MS_I}{MS_E} = \frac{2.90}{0.23} = 12.61$$

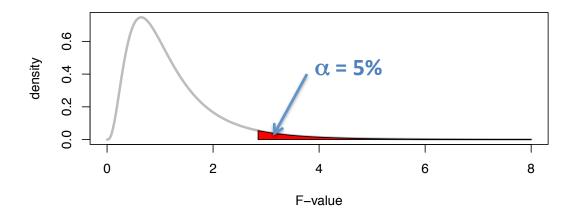
Test de H0



Les compositions isotopiques du carbone des 3 types d'occupation du sol en Bourgogne <u>ne sont pas toutes égales</u>

Remarques:

1) L'ANOVA est toujours un test unilatéral



2) L'ANOVA n'est pas un test de comparaison des variances

$$H_0 \text{ neq} : \sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2$$

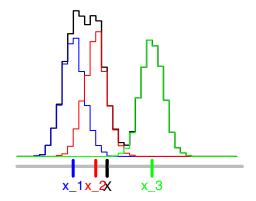
ANOVA 1 facteur

Conditions d'application

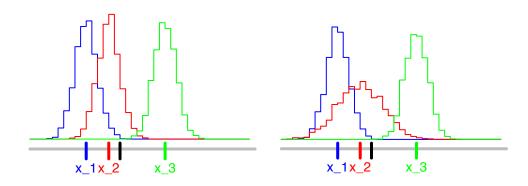
ANOVA 1 facteur – Conditions d'application

Avant de faire une ANOVA...

- 1) Variable dépendante quantitative
- 2) Indépendance des observations
- 3) Distribution normales à l'intérieur des k groupes



4) Variances des k groupes équivalentes (homoscédasticité)



ANOVA 1 facteur – Conditions d'application

Avant de faire une ANOVA...

Conditions pas toujours toutes vérifiées, **MAIS**:

ANOVA robuste:

- Variances hétérogènes, mais n_j égaux ou proches sinon, probabilité erreur type I ≠ α
- Non normalité, mais grands échantillons sinon, puissance du test modifié

Alternatives:

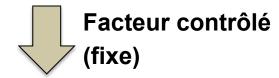
- Transformation des données
- Procédure modifiée d'ANOVA
- Test non-paramétrique (Kruskal-Wallis)

ANOVA 1 facteur – 2 modèles d'ANOVA

Plusieurs types d'ANOVA

Modèle I

Modèle avec effet fixe "fixed-effects model"



Niveaux du facteur complètement contrôlés Choix des seuls niveaux d'intérêts

Modèle II

Modèle avec effet aléatoire "random-effects model"

Niveaux du facteur choisis au hasard

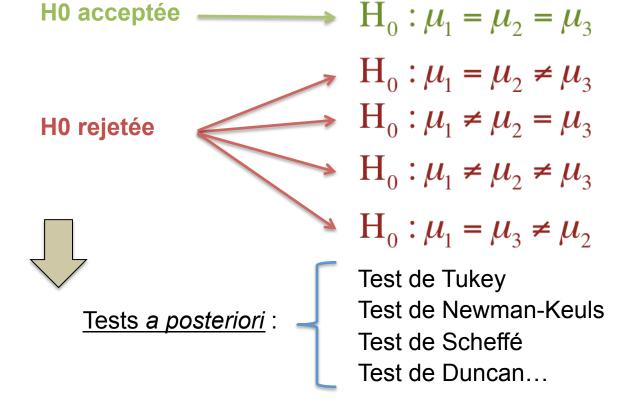
ANOVA 1 facteur

Tests a posteriori

ANOVA 1 facteur – Test a posteriori

Une fois H0 rejetée...

ANOVA
$$\begin{cases} H_0: \mu_1 = \mu_2 = \ldots = \mu_k = \mu \\ H_1: \text{tous les moyennes ne sont pas égales} \end{cases}$$



ANOVA 1 facteur – Test a posteriori

Test de Tukey

Test de Tukey
$$\begin{cases} H_0: \mu_A = \mu_B \\ H_1: \mu_A \neq \mu_B \end{cases}$$

- 1) On classe les moyennes des k groupes par ordre croissant
- **2)** On calcule des différences de moyennes, en commençant par la plus grande et la plus petite, la plus grande et la 2nd plus petite, ..., la 2nd plus grande et la plus petite, la 2nd plus grande et la 2nd plus petite,...
- 3) On calcule la variable auxiliaire q:

$$q = \frac{\overline{X}_B - \overline{X}_A}{SE}$$
 avec $SE = \sqrt{\frac{MS_E}{n}}$ ou $SE = \sqrt{\frac{MS_E}{2} \left(\frac{1}{n_A} + \frac{1}{n_B}\right)}$ si $n_A \neq n_B$

ANOVA 1 facteur – Test a posteriori

Test de Tukey

Test de Tukey
$$\begin{cases} H_0: \mu_A = \mu_B \\ H_1: \mu_A \neq \mu_B \end{cases}$$

- 1) On classe les moyennes des *k* groupes par ordre croissant
- **2)** On calcule des différences de moyennes, en commençant par la plus grande et la plus petite, la plus grande et la 2nd plus petite, ..., la 2nd plus grande et la plus petite, la 2nd plus grande et la 2nd plus petite,...
- 3) On calcule la variable auxiliaire q:
- 4) Compare q à la valeur seuil : $q_{\alpha,\nu,k}$: Si $q \ge q_{\alpha,\nu,k} \Longrightarrow H_0$ est rejetée α : seuil de significativité = proba. de commettre au moins 1 erreur de type I au cours des comparaisons multiples
 - v : ddl associé à MS_E dans l'analyse de variance
 - k : nombre total de moyennes comparées

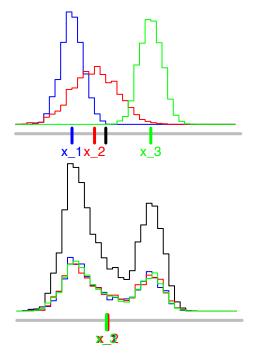
ANOVA 1 facteur

et si les postulats ne sont pas vérifiés...

ANOVA 1 facteur – Alternatives non-paramétriques

1 – Transformation des données

2 – Tests de permutation



3 – Tests non-paramétriques : Kruskal-Wallis

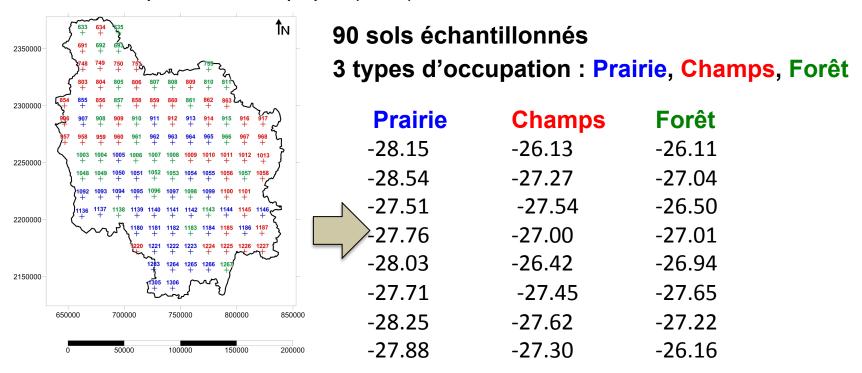
KRUSKAL-WALLIS

Comparaison des rangs

ANOVA 1 facteur – Test de Kruskal Wallis

MAIS

Exemple : Effet de la nature de l'occupation des sols en Bourgogne sur leur composition isotopique (δ^{13} C)



distribution des données non normale et/ou variances hétérogènes

ANOVA 1 facteur – Test de Kruskal-Wallis

Les hypothèses

H₀: Il n'y a aucune différence entre les k groupes
 <u>ou</u> les k groupes sont issus de la même population statistique
 <u>ou</u> les k groupes constituent un ensemble homogène

H₁: Il existe au moins une différence entre 2 groupes
 <u>ou</u> les k groupes ne proviennent pas de la même population statistique
 <u>ou</u> les k groupes constituent un ensemble hétérogène

Important!:

 $\begin{cases} H_0: \mu_1 = \mu_2 = \dots = \mu_k = \mu \\ H_1: \text{tous les moyennes ne sont pas égales} \end{cases}$

ANOVA 1 facteur – Synthèse

Comparaison de <u>plusieurs</u> échantillons <u>indépendants</u>

