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a b s t r a c t 

In Sumba Island – Indonesia, the implantation of vernacular houses, inside and outside traditional vil- 

lages, is considered to be an efficient proxy for the on-going complex cultural transformations resulting 

from globalization. This study presents an easily reproducible workflow allowing buildings to be auto- 

matically detected from satellite imagery, demonstrating how modern computer vision methods based 

on deep learning can help in this task, which would be far too time-consuming when undertaken by 

hand. Eight deep learning architectures based on convolutional neural networks were compared in terms 

of ability to identify and locate precisely traditional houses from satellite images. By combining a Faster 

R-CNN ResNet 101 architecture with artificial data augmentation, the model was taught properly using 

1033 instances of vernacular houses (AP@.50:.95 = 71.9). Once 14 952 traditional houses had been de- 

tected, the Histogram of Orientated Gradients (HOG) was computed and processed by several machine 

learning algorithms to assess their surface area, as this parameter conveys pertinent information about 

the economic and political position of the householder. The best classifier was found to be a support vec- 

tor regressor (SVR, R 2 = 0.88), although the other classifiers tested also provided good results (R 2 > 0.76). 

Spatial analysis was used to draw conclusions from an anthropological / cultural identity point of view. 

More generally, these techniques not only offer a simple increase in recording capabilities for tangible 

cultural heritage, they open up new research perspectives, at greater scales. 

© 2021 Elsevier Masson SAS. All rights reserved. 

1

m

t

f

i

c

o

h

e

b

s

g

d

m

m

s

d

k

T

d

t

t

l

a

h

1

. Introduction 

The massive introduction of satellite imagery into daily life has 

odified our perception of space by enabling people to visualize 

he diversity of our planet, while experiencing perilous exploration 

rom the comfort of their homes. This wealth of documentation, 

ncluding digital images in visible spectra and beyond, has led to 

onsiderable advances in many fields of research [1–4] . This source 

f knowledge has opened new research perspectives for cultural 

eritage and archaeology at much vaster scales [5–9] . The digital 

ra has nevertheless produced a bottleneck: human beings may 

e unable to deal with this huge flow of information in a rea- 

onable amount of time [10–12] , particularly when identifying a 
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iven structure among a myriad of images. Fortunately, this mun- 

ane repetitive task can now be tackled using methods based on 

achine learning, freeing scientists to devote their expertise to 

ore complex problems [ 13 , 14 ]. Interest in deep learning, a sub- 

et of these methods, has increased considerably over the past two 

ecades [ 15 , 16 ], profiting from rapid technical improvements, and 

ey breakthroughs in mathematics, especially in optimization [17] . 

hese techniques are designed to learn from data and make pre- 

ictions on new instances with a minimum error rate. The archi- 

ecture of the models is composed of several layers of convolu- 

ional artificial neurons, where information flows after being non- 

inearly transformed [ 18 , 19 ]. Relevant features are then learnt from 

 high level of data abstraction [17] . Three main objectives are ap- 

lied to images: classification [20] , object detection [21] , and ob- 

ect segmentation [22] . These approaches, based on state-of-the- 

rt deep learning algorithms, have been successfully applyied for 

https://doi.org/10.1016/j.culher.2021.10.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/culher
http://crossmark.crossref.org/dialog/?doi=10.1016/j.culher.2021.10.004&domain=pdf
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roper management and protection of cultural heritage. For exam- 

le, models have been developed to detect damage to historical 

uildings automatically [23–24] , to map lithology of stones from 

mages [25] , or to identify types of weathering in historical stones 

26] , in order to optimise the choices made in conservation and 

estoration practices. In this study, we focus on object detection 

hrough deep learning, seeking to identify and locate vernacular 

ouses on Sumba Island (Indonesia), from a huge set of satellite 

mages. These traditional houses, known as rumah adat in Indone- 

ian, are targeted because they are emblematic of the indigenous 

ocal culture [ 27 , 28 ]. They are characterized by a high-pitched cen-

ral peak in the roof, materializing the connection with the spir- 

ts. Ancestral settlements generally contain a few to a few dozen 

f these houses, organized in circles, or in parallel rows facing 

ach other, together with collective megalithic funeral monuments. 

arying in size, these monuments appear to be extensions of clan- 

ouses [ 29 , 30 ]. With economic development and recent cultural 

lobalization, more people are leaving traditional villages, gradu- 

lly abandoning the traditions, rituals, and religious beliefs of their 

arapu culture [ 27 , 30 ]. These recent mutations disrupt to some ex- 

ent the traditional way of life and its ancestral cultural founda- 

ions. 

. Research aim 

Our objective is to propose an easily reproducible workflow al- 

owing human structures to be detected from satellite imagery, and 

o demonstrate how modern computer vision methods based on 

eep learning can help to apprehend the on-going complex trans- 

ormations described above. The implantation of vernacular-style 

ouses, inside and outside traditional villages, is considered an 

ffective proxy. Eight of the most powerful deep learning archi- 

ectures, belonging to two families of detectors, were compared 

or their ability to identify and locate traditional houses from a 

et of satellite images covering the region of Waikabubak, where 

uch houses are abundant. Solutions based on artificial data aug- 

entation were sought to teach the models properly, even with 

ewer instances. The reason is not only that the labelling phase 

akes time, but above all because a limited number of examples 

uring the learning phase may present a serious obstacle to the 

ruly effective application of deep learning [12] . Although vernacu- 

ar houses are plentiful on Sumba Island, such solutions would be 

ery helpful in archaeology, where the available instances may be 

ar scarcer. Once the best approach had been selected, the proce- 

ure was extended to the whole of Sumba Island. After separating 

solated houses from those belonging to traditional villages, spatial 

nalysis was used to draw conclusions from an anthropological / 

ultural identity point of view. Several regression algorithms were 

lso applied to estimate the size of the roofs thus identified, as this 

arameter conveys pertinent information about the economic and 

olitical position of the householder. 

. Material and method 

.1. The site 

Sumba Island ( Pulau Sumba ), ca. 1500 km ESE of Jakarta, be- 

ongs to the Indonesian Lesser Sunda Islands ( Fig. 1 a). The territory 

overs ca. 11 0 0 0 km 

2 , with a maximum elevation of 1 225 m asl.

eologically, the island is predominantly composed of sedimentary 

ocks, with some volcanic / intrusive rocks ( Fig. 1 b, [31] and refer-

nces cited therein). The topography of sedimentary formations is 

ainly coastal terraces and rugged karsts. The tropical dry climate 

s characterized by seasonal precipitation, abundant only from De- 

ember to March, with the driest zones along the north and north- 

ast coasts. The population of about 80 0 0 0 0 is mostly rural, con-
172 
entrated in the hilly fertile western part of the island, except for 

he largest town of about 40 0 0 0 inhabitants [32] , Waingapu, lo- 

ated in the northeast ( Fig. 1 a). The territory is administratively 

ivided into West and East Sumba, corresponding approximately 

o cultural domains, represented in Fig. 1 c by the ethnolinguistic 

istribution. East Sumba is more linguistically homogeneous than 

est Sumba. Two large natural parks were created in 1998 on the 

outh coast because of their exceptional biodiversity ( Fig. 1 a): ( i )

he Manupeu Tanah Daru National Park, covering 870 km 

2 and 

onsisting mainly of lowland forests developing on steep slopes, 

nd ( ii ) the Laiwangi Wanggameti National Park, covering 880 km 

2 

nd composed of steppe (60%), and lowland or mountainous rain- 

orest (40%). 

.2. Corpus 

Several thousands of typical high-towered houses are present at 

umba, either as isolated buildings or clustered, forming villages 

nd hamlets in the traditional way. Houses are almost square- 

haped, from ∼6 m to ∼20 m in size ( Fig. 2 ). Although originally

onstructed from pieces of wood and bamboo linked with vegetal 

opes, reinforced concrete is often used today. The dense thatch of 

lang - alang grass (a local plant) used to build the roof ( Fig. 2 a-b) is

ow increasingly replaced by raw corrugated metal ( Fig. 2 c; [33] ). 

ote that a few resorts and official buildings imitate the style of 

hese indigenous constructions. 

Automatic detection algorithms were evaluated on satellite im- 

gery distributed by Microsoft Bing TM ( https://zoom.earth/ ). The 

ast majority of images at the highest level of definition available 

ca. 0.3 m/px) were neither too dark nor too bright, with almost 

o clouds. A home-made Python snippet collected tiles 256 × 256 

x in size over the targeted geographical extent. They were then 

erged to produce larger images of 640 × 645 px (corresponding 

o 187.5 m × 188.5 m), a size suitable for further application of 

eep learning ( Fig. 3 a). Reconstructed GeoTIFF images were made 

o overlap each other by 80 pixels (ca. 25 m) in all directions, to 

nsure that all houses are complete at least once [34] ; see houses 

 and 2 in Fig. 3 b, truncated with a blue square, but complete with

ellow and red squares. Due to overlap, some complete houses are 

een on two or more images (e.g. houses 3 and 4 in Fig. 3 b). They

ere automatically removed using a simple rule: if the centres of 

heir bounding boxes were less than 6 m apart (a value lower than 

he minimum size of a house), only the most probable item was 

ept. 

Images around Waikabubak ( Fig. 1 a), within a geographical 

atitudinal-longitudinal extent of ( −9.680 °; −9.588 °) / (119.360 °; 
19.470 °), were first processed to select the best model. This model 

as then applied to the whole island with a geographical extent of 

 −10.346 °; −9.271 °) / (118.912 °; 120.870 °). About 70 0 0 0 0 files re-

ained after removing useless offshore tiles. 

.3. Labelling 

Before training any object detection model, the operator needs 

o point out target locations of houses manually in a set of images 

onsidered as representative. At that point, two approaches can be 

pplied, using either polygons (and subsequently, models dedicated 

o segmentation) or simple rectangular bounding boxes (ground- 

ruth boxes), defined by the pixel coordinates of their upper-left 

nd lower-right corners [35] . For the sake of simplicity, we decided 

o use the latter approach. It is generally admitted that a model 

s able to detect an object that a human can identify by looking 

t the image for just 1–2 s. In our case, traditional houses were 

lmost always easy to spot, whatever the roofing material used 

 Fig. 4 ), because of their typical square shape, combined with the 

istinctive shadows produced by the high roof tower. The relatively 

https://zoom.earth/
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Fig. 1. Geographical, geological, and ethnolinguistic maps of Sumba. (a): hill-shaded, coloured, 30-m resolution digital elevation model ( https://www.eorc.jaxa.jp/ALOS/en/ 

aw3d30/ ); (b): combined bedrock, and superficial geology and age map ( http://portal.onegeology.org/OnegeologyGlobal/ ); (c): approximate geographical locations of the 16 

main dialects (Edwards and UBB, 2018). 

Fig. 2. Some examples of vernacular houses found at Sumba. (a): collective funeral monuments in the foreground and several vernacular houses in the background; (b) aerial 

view of a village, with houses exhibiting a high-pitched central peak in their roofs; houses are clustered and organized in rows facing each other because of the limited 

space on the top of the hill; (c) houses at Mamboro, including a large recent house with a raw corrugated metal roof. 

s

a

v

s

f

b

s

n  

b

t

k

t

g

h

teady downward-facing views from the satellite facilitate this task, 

lthough some satellite pictures were also captured in oblique 

iew, and then post-processed by orthorectification before diffu- 

ion. This process generated some noticeable deformation, trans- 

orming squares into diamonds, but did not affect identification or 

ounding box positioning (not shown here). When the triangular 

tructure on the roof was not clearly identified, the houses were 
173 
ot labelled (see 1 and 2 in Fig. 4 ). The annotating step used La-

elImg, a free software ( https://github.com/tzutalin/labelImg ). Note 

hat bounding boxes of houses partly masked by vegetation were 

ept approximately square by including the supposed position of 

he building below the canopy. A total of 494 images for the re- 

ion of Waikabubak produced 1 396 bounding boxes of traditional 

ouses. 

https://www.eorc.jaxa.jp/ALOS/en/aw3d30/
http://portal.onegeology.org/OnegeologyGlobal/
https://github.com/tzutalin/labelImg
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Fig. 3. Composition of images used for further deep learning. (a) images of 640 × 645 px (in yellow) are composed by merging individual 256 × 256 tiles (in white); (b) 

georeferenced images (in yellow, blue and red) overlap each other by 80 pixels in all directions; objects 1 and 2 are complete in only one image, while objects 3 and 4 are 

seen completely in two images. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Final bounding boxes annotated as vernacular houses (in yellow), for one 

example of a reconstructed image. Manually positioned, they locate the object of 

focus for deep learning models. The houses with a relatively dark roof summit (see 

objects 1 and 2), to some extent like those of triangular towers, were not targeted 

here because they do not present the clear characteristics of true high-towered 

houses. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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.4. Object detection models 

Our intention here is not to describe extensively the complex 

rchitectures of the models tested, but to provide basic informa- 
174 
ion to explain the underlying principles of deep learning applied 

o object detection. More details can be found in the abundant 

pecialized literature [ 17 , 21 , 36 ], many textbooks [37–40] , and web

ites dedicated to deep learning. Object detectors can be divided 

nto two main categories, one- and two-stage detectors [ 40 , 41 ]. 

n two-stage detectors, such as Faster R-CNN, the input image is 

assed through a convolutional neural network (CNN) to obtain a 

eature map of the image. This part is referred to as the “back- 

one” network. The map is then used by a Region Proposal Net- 

ork (RPN), which is a fully convolutional network proposing re- 

ions characterized by reference anchor boxes of fixed scales and 

spect ratios, placed evenly on the original image. These regions 

re then filtered by a Non-Maximum Suppression algorithm, whose 

urpose is to decrease the number of candidate objects to an ac- 

eptable level. Bounding box extraction and classification are then 

btained for each candidate using regression from the Region of 

nterest (RoI) pooling layer [42] . The Single Shot Detector (SSD) 

elongs to the one-stage detector group [43] . It may operate in 

eal-time with a decent trade-off between performance and speed 

 41 , 43 ]. Such a speedy process is obtained by running a convo-

utional network on the input image only once, and then calcu- 

ating a feature map. A small convolutional kernel is operated on 

his feature map to predict bounding boxes and compute classi- 

cation probabilities. The SSD also uses anchor boxes. It predicts 

ounding boxes after multiple convolutional layers, which may be 

f different scales. Results are aggregated, and redundant informa- 

ion is eliminated by applying a non-maximum-suppression algo- 

ithm, as with Faster R-CNN. The two-stage detectors may, how- 

ver, provide better results at the expense of speed. The algorithm 

chematics of SSD and Faster R-CNN are available in Supplemen- 

ary SM1, modified after [23] and [44] . Although many of the avail- 

ble models have already been evaluated through various chal- 

enges, using for instance the Common Object in Context dataset 

i.e. COCO, http://cocodataset.org/#home ; [45] ), eight different ob- 

ect detection models were tested here: two based on the SSD cat- 

http://cocodataset.org/#home
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Table 1 

Performance scores of different architectures, pre-trained on the COCO dataset (models are downloadable at the following ad- 

dress: https://github.com/tensorflow/models/blob/master/research/object _ detection/g3doc/detection _ model _ zoo.md ); Training is per- 

formed following two configurations including either 480 or 1033 instances of houses. Evaluation is performed on the same 124 

instances of houses. No data augmentation is applied. ∗: stride value between parentheses. See text for definitions of AP@.50:.95, AP 

@.50, and AP @.75. 

Metrics (expressed in%) AP @.50:.95 AP @.50 AP @.75 AP @.50:.95 AP @.50 AP @.75 

Number of instances used for training 480 1033 

Name as in the Tensorflow detection model zoo homepage 

ssd_inception_v2_coco 54.5 95.6 56.6 61.4 98.4 70.0 

ssd_resnet_50_fpn_coco 62.0 93.5 76.7 67.2 98.7 84.7 

faster_rcnn_inception_v2_coco 53.5 93.6 54.1 59.7 97.1 68.3 

faster_rcnn_inception_resnet_v2_atrous_coco (8) ∗ 64.7 96.6 77.2 68.2 98.6 84.9 

faster_rcnn_resnet50_coco (16) ∗ 60.1 96.5 70.5 63.6 98.7 78.9 

faster_rcnn_resnet50_coco (8) ∗ 65.1 97.1 81.1 68.3 99.5 84.6 

faster_rcnn_resnet101_coco (16) ∗ 62.0 95.3 75.7 67.3 97.7 85.2 

faster_rcnn_resnet101_coco (8) ∗ 68.4 97.4 85.7 71.9 98.7 88.7 

Fig. 5. Shape variation of manually positioned bounding boxes, expressed as height 

as a function of width (in pixels). The light blue histograms at the top and the right 

represent the distributions of width and height, respectively. 
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gory, and six on Faster R-CNN [46] . They are listed in Table 1 , with

ifferent convolutional neural network backbones, codenamed in- 

eption [47] , ResNet [48] and inception-ResNet, with or without 

eature pyramid networks (namely FPN; [49] ) as feature extractors. 

he idea was to reuse these models, already trained for a different 

ask, as the starting point for a custom dataset and specific prob- 

em [50] . This approach, known as transfer learning, is expected 

o speed up the training step and to improve overall performance 

hen sensitive parameters are fine-tuned [38] . 

.5. Tuning for house shape and size 

For both SSD and Faster R-CNN, a very dense set of potential 

andidates with different scales and aspect ratios is evenly dis- 

ributed on the images. The parameters controlling the density, 

ize and shape of these anchor boxes are of primary importance, 

specially when detecting small objects [51] . An initial guess can 

e made from the joint distribution of height and width for house 

ounding boxes observed in the annotated set ( Fig. 5 ). Here, the 

roblem is relatively simple because the bounding boxes will re- 

ain square whatever the house orientation (i.e. the houses lie on 

r around the y = x line in Fig. 5 ), while their size varies relatively

ittle, between ca. 30 2 and 80 2 pixels ( Fig. 5 ). After applying a k -
175 
earest neighbours’ algorithm ( k = 3), three main sizes can finally 

e retained {0.15, 0.2, 0.25}, corresponding to 38 2 , 51 2 and 64 2 

ixels respectively (given a base anchor of 256 × 256), while two 

spect ratios {0.9; 1.1} appeared to be sufficient, since the overall 

hape is quite regular. Output strides and padding for the extractor 

re two other important parameters, as they control how deep the 

bstraction goes to extract features [51] . Denser and more accu- 

ate predictions are generally obtained using low strides, but this 

ill notably increase running time [52] . Two values, {8, 16} pix- 

ls, were tested here to assess their efficiency in extracting small 

bjects from optical remote sensing images. 

.6. Data augmentation 

Deep learning skills are conditioned by the availability of the 

ata feeding the model. While popular datasets used for challenges 

ay contain tens of thousands of images, instances may be much 

arer in cultural or archaeological studies. A simple technique, 

nown as data augmentation, has been developed to enlarge the 

ataset artificially in such cases [53] . This technique supplements 

he original set of images by new synthetically produced data, ob- 

ained by combining geometrical transformations and colour alter- 

tions sequentially [54] . Here, six augmentations were tested: 90 °
otation, horizontal and vertical flipping, grey level conversion, ran- 

om colour distortion, and random jitter of box corners by 1 to 

 pixels (see Supplementary Material SM2). A total of 64 experi- 

ents (i.e. 2 6 for 6 investigated factors, each with 2 levels: applied 

 not applied) would be required to evaluate the individual influ- 

nce of each factor on model performance. As such a full factorial 

esign is time-consuming, factors were selected by building a re- 

uced 2 6–2 fractional design [55] . Let A, B, C, D be the first four

actors; the remaining two: E and F, were chosen so that E = A 

∗B 

∗C

nd F = B ∗C 

∗D ( Table 2 ). This resolution-IV design represents only

of the full 2-level, 6-factor design. Thus, the main effects are 

ot confounded with two-factor interactions, but only aliased with 

-factor and higher-order interactions, which may reasonably be 

onsidered insignificant [56] . 

.7. Model performance 

Three-quarters of the images were randomly selected for train- 

ng, with the remainder kept for evaluation. Average Precision (AP), 

 common metric in deep learning, was used to measure the per- 

ormance of the detectors on the evaluation set. The AP calcula- 

ion considers the common trade-off between precision and re- 

all, observed at different degrees of correctness for the predicted 

ounding boxes. These degrees of acceptability are obtained using 

ifferent thresholds for the Intersection over Union (IoU), a pa- 

ameter defined as the area of overlap between the predicted box 

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md


F. Monna, T. Rolland, A. Denaire et al. Journal of Cultural Heritage 52 (2021) 171–183 

Table 2 

Results of the fractional design (16 carefully chosen experiments) to assess the effect of each individual factor for data aug- 

mentation: horizontal and vertical flip of the image, rotation 90 °, colour adjustment, grey level conversion, and bounding 

box jitter. 1 means that the factor is applied (i.e. high level), −1 for not applied (i.e. low level). On the right, the perfor- 

mance scores using as metrics AP@.50:.95, AP@.50, and AP@.75. See text for definition. Experiments were performed using 

the same 480 and 124 instances of houses for training and evaluation. 

Factor Metric 

A B C D E F AP@.50:.95 AP@.50 AP@.75 

Horiz. flip Vert. flip Rot. Colour adj. Grey level Jitter BB 

Exp . # 

1 −1 −1 −1 −1 −1 −1 68.4 97.4 85.7 

2 1 −1 −1 −1 1 −1 71.1 98.6 90.7 

3 −1 1 −1 −1 1 1 71.7 97.8 89.8 

4 1 1 −1 −1 −1 1 70.4 98.5 88.7 

5 −1 −1 1 −1 1 1 70.4 98.5 88.6 

6 1 −1 1 −1 −1 1 69.4 98.1 87.1 

7 −1 1 1 −1 −1 −1 69.9 97.6 85.1 

8 1 1 1 −1 1 −1 71.3 98.4 92.0 

9 −1 −1 −1 1 −1 1 71.0 97.8 87.2 

10 1 −1 −1 1 1 1 70.7 97.3 89.5 

11 −1 1 −1 1 1 −1 70.5 97.4 89.3 

12 1 1 −1 1 −1 −1 70.8 97.6 88.2 

13 −1 −1 1 1 1 −1 70.2 98.2 89.2 

14 1 −1 1 1 −1 −1 69.8 98.4 89.1 

15 −1 1 1 1 −1 1 70.5 97.6 89.0 

16 1 1 1 1 1 1 71.0 97.7 91.5 
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nd the ground truth, divided by the area of their union [57] . The

oU ranges between 0 and 1, with high values indicating more ac- 

urate prediction. The metric used is that of the COCO challenge 

45] , with ten IoU thresholds, from 0.5 to 0.95, at a step of 0.05

noted AP@.50:.95. AP). It is produced by averaging over the 10 IoU 

hresholds and tends to reward models that are better at precise 

ocalization. In any case, AP@.50:.95 is less generous than IoU ≥
.5, or the stricter IoU ≥ 0.75 limit, which are reported for infor- 

ation. 

.8. Operational settings 

For all the experiments, the maximum training epoch was set at 

0 0 0 0, using an initial learning rate of 3.10 −4 for the first 10 0 0 0

teps, 3.10 −5 up to 20 0 0 0 steps, and then 5 10 −6 . For Faster R-

NN models, a batch size of 1 (corresponding to a Stochastic Gra- 

ient Descent optimization algorithm, [ 58 ]) was set, together with 

 momentum of 0.9, while a batch size of 4 was used for SSD. At

 certain point, training loss may continue to decrease, but testing 

oss may start to increase. This is a clear sign of overfitting, where 

he model learns well from the training dataset, but fails to gener- 

lize this knowledge to make correct inferences on new instances. 

hat is why training was always stopped before 50 0 0 0 iterations 

often after 15 0 0 0 – 45 0 0 0). The evolution of the total loss ob-

erved on the training set, together with the AP value computed 

rom the evaluation set are reported in Supplementary Information 

M3 (using a Faster R-CNN ResNet 101 model). 

.9. Separating houses forming villages from isolated houses 

A Density-Based Spatial Clustering of Applications with Noise, 

BSCAN [59] , algorithm was applied to differentiate isolated 

ouses from those forming villages. When density decreases be- 

ow a certain point, houses are assumed to lie outside groups. Two 

ensitive parameters must be set: the minimum number of items 

ecessary for a group, and the maximum distance for clustering 

ith the nearest neighbour. Based on our knowledge of Subanese 

illages, a ‘traditional village’ is a cluster of at least three vernac- 

lar houses, less than 70 m from their nearest neighbour. Houses 

hat do not fulfil these conditions are defined as ‘isolated’. In rare 

ases, these settings mask the reality of the terrain: in the Loli dis- 
176 
rict, for example, Tarung and Waitabar, two separate villages, were 

lustered because of their proximity. Without complementary field 

nvestigations, such a scenario cannot be identified, but most vil- 

ages lie hundreds of metres apart. 

.10. Clustering by under- or over-representation of isolated houses 

Scan statistics [60] , a procedure often used in epidemiology, 

as applied to examine whether the ratio of isolated houses / 

ouses in villages is the same throughout Sumba territory (i.e. spa- 

ial homogeneity) or not (i.e. an underlying geographical structure). 

riefly, it consists in scanning the space gradually, centring from 

ne house to another, and counting the number of houses belong- 

ng to each type, within expanding circles. Considering a Bernoulli 

odel, a likelihood ratio test is computed for each location and 

ize of the scanning window, using as an alternative hypothesis a 

igh (or low) ratio of isolated (or village) houses within the search 

indow. 

.11. Estimating the surface of recognized houses 

With satellite imagery, it is impossible to know the precise 

ouse surface area when roofs overhang walls for protection from 

ainfall. The difference may reach 25%, but roof area is always pro- 

ortional to house surface area. With houses systematically ori- 

ntated North – South (or East – West), the problem would be 

rivial since bounding boxes would approximately match roofs. 

ere, house orientation is variable. Given its roughly square ge- 

metry, a roof can be considered as a square inscribed in another 

quare (bounding box), so that the surface of the roof is com- 

rised between ca. 50% and 100% of the box surface, depending 

n house orientation. A supervised machine learning approach was 

eveloped for further assessment. The distribution of local inten- 

ity gradients or edge directions was chosen as input feature. The 

ethod, known as Histogram of Orientated Gradients (HOG), has 

een widely applied for face detection [61] . In brief, it consists in 

ividing the image into several small cells of N × N px ( Fig. 6 a),

here gradient intensities and orientations are computed ( Fig. 6 b). 

ig. 6 c demonstrates how well local appearance and overall house 

ilhouette are described by gradient distributions, suggesting that 

his set of variables could be a good candidate to predict roof ori- 
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Fig. 6. The machine learning pipeline for assessing the size of vernacular houses, modified after Carcagni, et al. (2015). (a): the image, rescaled at 64 × 64 px, is divided 

into a 8 × 8 grid; (b): gradients are computed following 12 orientations within every cell; (c): the orientated gradients allow the orientation of the house to be visualized 

clearly; (d): construction of the input feature vector, x ; (e): four points manually positioned close to the corners of the roof (in red), and its corresponding minimum 

bounding rectangles (in yellow), where the surface area is the variable to be predicted: y ; (f) five machine learning algorithms are applied to input features (a set of oriented 

gradients). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ntation (see also two additional examples of houses, differently 

rientated in Supplementary Material SM4). Histograms are then 

uilt for each cell of the dense grid covering the image ( Fig. 6 d).

n practice, the images of 363 houses were resized to 64 × 64 px 

o produce an 8 × 8 grid, where each cell represents 8 × 8 px. 

 total of 12 orientations was evaluated within each cell, produc- 

ng an input feature vector, x , of 768 values (12 orientations × 64 

ells), characteristic of each image ( Fig. 6 d). In addition, four points 

ere manually placed at (or close to) the four corners of the roof 

or each of the 363 houses. The surfaces of the minimum bound- 

ng rectangles were computed, representing the variable to be pre- 

icted: y ( Fig. 6 e). A total of 288 houses was used for training,

hile the remaining 75 houses were kept for evaluation. Five ma- 

hine learning algorithms: decision tree, k -nearest neighbours, ar- 

ificial neural networks, support vector machine regression, and 

andom forest, were tested by applying a grid search approach 

ombined with cross-validation to fine-tune the hyperparameters 

 Fig. 6 f; [62] ). Their prediction capabilities were evaluated, using 

oefficients of determination, mean relative errors, and maximum 

elative errors as quality scores. The best model was then applied 

o the entire set of houses detected over the Sumba territory. 

.12. Implementation 

Object detection models were produced and evaluated using 

ython 3.7 ( https://www.python.org/ ), and the free TensorFlow ob- 

ect detection API (v. 1.13 including GPU capabilities). Pre-trained 

odels are available at the Tensorflow detection model zoo home- 

age. The homemade Python snippet for assessing house size re- 

ies on the numpy, gdal, scikit-learn, scikit-image, csv, and pan- 

as libraries, and a modified version of the min_bounding_rect.py 

nippet ( https://gist.github.com/kchr/77a0ee945e581df7ed25 ). Re- 

ults are expressed as georeferenced polygon vector layers. The 

omemade snippet for DBSCAN relies on the scikit-learn library 

 63 ]. The identification of geographical clusters by scan statistics 

sed the 64-bit SaTScan v9.6 software ( http://www.satscan.org/ , 
177 
60] , see user manual for p -value calculation with a Monte-Carlo 

pproach). 

. Results and discussion 

.1. Comparing object detection models 

The first experiments trained the candidate models using 480 

nd 1033 instances of traditional houses, and an evaluation set 

omposed of 124 and 363 items, respectively, without any syn- 

hetic data augmentation. As expected, performance is better with 

he largest training set: the gain is ca. 3.5–7% for AP@.50:.95, 1.5–

% for AP@.50, and 3–13% for AP@.75 ( Table 1 ). At first glance, all

odels provide acceptable outputs, extracting most of the houses, 

ith AP@.50:.95 above 50%, and AP@.50 greater than 90%. Al- 

hough SSD is fast, it is known to perform less well for small ob- 

ects, compared with state-of-the-art models based on Faster R- 

NN. Using output stride and padding of 8 instead of 16 proves 

eneficial to the overall achievement of the Faster R-CNN detectors 

ased on ResNet 50 and ResNet 101 ( Table 1 ), as AP@.50:.95 in-

reases by 5–6%, AP@.75 by 4–10%, and AP@.50 by 1–2%. The Faster 

-CNN model with a ResNet 101 backbone is retained as it greatly 

urpasses the other models whatever the number of instances used 

or training. Despite an increase in running time, an output stride 

or the extractor of 8 pixels is used, because houses must only be 

xtracted once from satellite images. As no synthetic data augmen- 

ation is applied, the performances reported in Table 1 can be con- 

idered as the baseline. 

.2. Data augmentation strategy 

The question then arises whether the use of an appropriate data 

ugmentation strategy can push significantly further the capabili- 

ies for a training dataset of fixed size. The results of the 16 exper- 

ments for the fractional design built to assess the effect of each 

ndividual factor (i.e., horizontal and vertical flip, rotation, colour 

https://www.python.org/
https://gist.github.com/kchr/77a0ee945e581df7ed25
http://www.satscan.org/
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Table 3 

Main effect of factors used for data augmentation, i.e. application of random horizontal flip, vertical flip, ro- 

tation by 90 °, colour adjustment, grey level conversion, and bounding box jitter on AP value. The intercept 

term corresponds to the last column. The last line corresponds to the best augmentation strategy: ‘High’ for 

augmentation applied, ‘Low’ for not applied. 

Factor A B C D E F Intercept 

Horiz. flip Vert. flip rot. 90 ° colour adj. Grey level Jitter BB 

Main effect (%) 0.13 0.31 −0.14 0.13 0.42 0.20 70.4 

Optimal level High High Low High High High –

Fig. 7. Evolution of average precision (AP, expressed in%, see text for calculation) 

as a function of the number of instances used for training. Open blue squares for 

evaluations made without data augmentation, and red dots for optimal data aug- 

mentation; the solid red line and the dashed blue line correspond to interpolated 

evolutions. The percentages, in black, correspond to the gain obtained using data 

augmentation for various numbers of instances used for training. (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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djustment, grey level conversion, and jitter of bounding boxes) 

re presented in Table 2 . Note that training involved the lesser of 

he two configurations used in the previous experiment: the same 

ets of 480 and 124 instances of houses for training and evaluation, 

espectively. It appears that AP@.50:.95 increased notably, from no 

ata augmentation (68.4% for exp #1 in Table 2 ) to data augmenta- 

ion applying all factors (71.0% for exp #16). Estimates of main ef- 

ects associated with each factor are reported in Table 3 . All factors, 

xcept to some extent rotation, therefore seem to be profitable in 

erms of AP ( Table 3 ). Grey level conversion has the largest (bene-

cial) effect, followed by vertical flip, and jitter of bounding boxes. 

he application of horizontal flip and colour adjustment seems to 

ontribute only slightly to AP improvement. It must nevertheless 

e pointed out that AP is computed with a model frozen after an 

arly stop during the training phase. Identifying this optimal mo- 

ent is not easy, or at least not perfectly reproducible. Output re- 

ults (i.e. AP values) may thus suffer somewhat from slight assess- 

ent errors of ca. 0.1–0.2%. Given that these uncertainties are of 

he same order of magnitude as each of the main factor effects 

 Table 2 ), it becomes tricky to evaluate with precision their individ- 

al contribution to AP. The accumulation of slightly influential fac- 

ors by applying optimal data augmentation strategy as reported in 

able 2 undoubtedly produces a sizable increase in AP values. Such 

mprovements are observed systematically whatever the number of 

nstances used for training (from 144 to 1033; Fig. 7 ). However, the 

arger the dataset, the lower the gain, because one cannot afford 

n explosive increase in terms of AP when numerous instances al- 

eady illustrate most of the house variability encountered in the 

eld. Note that even when 1033 instances are used for training, the 

P value does not reach an asymptotic plateau ( Fig. 7 ). Slight but

ignificant progress might be achieved using more data for learn- 

ng. 
178 
.3. Inference on all Sumba Island tiles 

The final model trained using 1033 instances of houses and data 

ugmentation was used to make inferences on the entire collec- 

ion of ca. 700 000 tiles covering Sumba Island. After a few days 

f computation, a total of 22 397 traditional houses was identi- 

ed, with a confidence score above 0.5 (Supplementary Material 

M5). After duplicate removal, 19 143 items remained. Close exam- 

nation in GIS, using BING satellite imagery as basemap, revealed 

he presence of several false positives, i.e. objects wrongly iden- 

ified as traditional houses. These defects were essentially associ- 

ted with low confidence scores close to (or barely above) 0.5. A 

ut-off of 0.8 was therefore applied, keeping false negatives (tra- 

itional houses missed) at a very low level. A few obvious false 

ositives remained in open spaces, such as rice fields, with iso- 

ated trees producing shadows resembling those of house roof tow- 

rs, or in river talwegs, where shadows from rocks have a simi- 

ar appearance. After a quick check, most of these mistakes were 

anually removed, as well as known administrative buildings (e.g. 

t the airport) and resorts constructed in traditional Sumbanese 

tyle. The procedure may nevertheless miss some large houses 

potted in the field. These failures are often due to rare poor- 

uality images, or simply because satellite imagery is not up-to- 

ate (Supplementary Material SM6). Fig. 8 a depicts the position 

f the remaining 14 952 traditional houses throughout Sumbanese 

erritory, after increasing the probability threshold and operating 

anual cleaning, together with the density gradient (in blue) on 

he map. 

.4. Identifying traditional villages and isolated vernacular houses 

The threshold value of 70 m used to discriminate isolated 

ouses from those belonging to traditional villages is coherent 

ith the abrupt drop observed in the distribution of the distance 

o the nearest neighbour between houses (see the distribution in 

upplementary Material SM7). After calculation, 8 799 houses were 

onsidered as isolated ( Fig. 8 b1 and, at another scale, turquoise 

ots marked 1 in Fig. 9 ), while a total of 6 153 houses was as-

umed to belong to traditional villages ( Fig. 8 b2, white dots for 

ouses and villages marked 2 in Fig. 9 ). A total of 1 144 villages,

enerally with fewer than 5 traditional houses (but up to a maxi- 

um of 46), was identified using the above-mentioned rules (see 

he distribution of the number of houses forming a village in Sup- 

lementary Material SM8). Their central positions were then es- 

imated by computing the geographical centroid of village houses 

 Fig. 8 c, yellow stars in Fig. 9 ). It should be noted that mistakes

emain possible: ( i ) the smallest villages will not be identified if 

hey do not contain three traditional houses (see 3 in Fig. 9 ), ( ii )

wo different villages, close to each other, may be grouped to- 

ether if their nearest houses are less than 70 m apart (see 4 in 

ig. 9 ), ( iii ) several recent houses in the vernacular style, implanted

long the main road may be erroneously grouped to form a vil- 

age, due to their proximity. Such drawbacks, together with the 

are mistakes observed during the object detection phase, should 

ot be seen as critical flaws, because the main strength of the 
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Fig. 8. Vernacular houses and traditional villages identified over the entire Sumba territory. (a): Position of the 14 952 houses identified and density map represented using 

a blue gradient; darker blue means higher density; (b 1 ) positions of the 8 799 isolated houses and (b 2 ) the 6 153 houses forming traditional villages; (c) position of the 

1 144 traditional villages, with symbol size varying in relation to the number of vernacular houses forming the village. The pale pink polygons correspond to the two national 

parks. 

Fig. 9. Close-up in the region of Waikabubak depicting the identified vernacular 

houses, either isolated (turquoise dots) or organized in traditional villages (white 

dots); 1 for isolated houses; 2 for villages (yellow polygons, yellow star for cen- 

troid); 3 for a traditional village missed because it only contains two vernacular 

houses; 4 for two separate villages erroneously combined into one single entity. 

(For interpretation of the references to color in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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Table 4 

Algorithm performance scores: decision tree, k -NN for k -nearest neighbour re- 

gression, neural network, SVR for support vector machine for regression, and ran- 

dom forest; R 2 for coefficient of determination of the prediction, MRE for mean 

relative error, and MaxRE for maximum relative error. Several sets of feature vari- 

ables were tested: the full set, namely without PCA, and four reduced sets allow- 

ing 50%, 65%, 80%, and 95% of the total variance to be explained. In bold, the best 

result obtained, corresponding to the method used. 

Without PCA With PCA 

Variance explained (%) 100 95 80 65 50 

Decision tree 

R 2 0.704 0.775 0.775 0.761 0.764 

MRE (%) 8.4 7.3 7.3 7.0 7.5 

MaxRE (%) 26.9 20.9 20.9 24.5 20.0 

k-NN 

R 2 0.859 0.855 0.845 0.845 0.859 

MRE (%) 5.7 5.6 5.7 5.8 5.5 

MaxRE (%) 17.7 18.0 19.4 19.3 19.6 

Neural network 

R 2 0.673 0.734 0.813 0.858 0.840 

MRE (%) 8.7 6.6 5.9 5.6 5.9 

MaxRE (%) 21.8 25.9 15.9 15.3 18.7 

SVR 

R 2 0.787 0.848 0.868 0.883 0.870 

MRE (%) 6.6 5.7 5.5 5.3 5.1 

MaxRE (%) 17.7 14.7 14.9 13.6 16.5 

Random Forest 

R 2 0.793 0.839 0.837 0.812 0.818 

MRE (%) 6.7 6.1 6.1 6.4 5.9 

MaxRE (%) 19.3 16.9 17.3 20.1 18.3 

4

r

o

p

pproach is that it tends toward exhaustivity over a large terri- 

ory; these potential shortcomings will have no effect on statistical 

nalysis. 

Scan statistics demonstrate spatial structuration: the ratio of 

solated (or village) houses is clearly not homogeneous throughout 

he study area. Three main clusters, which cannot be attributed to 

andom effects, are statistically recognized ( Fig. 10 a). The first, cen- 

red on Waikabubak, presents a higher ratio of houses in villages 

in blue in Fig. 10 a). The second covers East Sumba almost en- 

irely, with a higher-than-expected ratio of isolated houses (in red 

n Fig. 10 a). The third, also with a higher ratio of isolated houses, 

s located at the extreme west of the island (in red in Fig. 10 a). 
179 
.5. House size 

Table 4 presents the results of the five machine learning algo- 

ithms tested, and their performance in assessing house size from 

riented gradient values. This was computed using either the com- 

lete raw dataset as input, or a reduced set obtained by Princi- 
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Fig. 10. (a): Results of the scan statistics processing over the entire Sumba territory, for all identified isolated houses, and those forming villages. The blue circle represents 

a cluster with a high ratio of vernacular houses belonging to villages; the two red circles correspond to areas with high ratios of isolated houses. For each cluster, the total 

number of houses within the circles, the number of isolated houses, the expected number under the null hypothesis (spatial homogeneity), and the p -value of the existence 

of a cluster, are provided. (b): Spatial distribution of house roofs larger than 200 m 

2 . The size of the circles varies with roof size. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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al Component Analysis (PCA) to capture maximum total variance 

ith lower dimensionality. Using the entire set of 768 values as 

nput data (i.e. without PCA transformation), performance scores 

re satisfactory, with high R 

2 values, varying from 0.67 to 0.86, 

hatever the method. The best results are obtained with k -nearest 

eighbours. The score of all models tends to improve with data 

eduction, except for the k -nearest neighbour algorithm that re- 

ains steady. The biggest boost is observed for the artificial neu- 

al network, with a notable R 

2 increase of almost 0.2. This score 

s slightly lower than that of the support vector machine algo- 

ithm with PCA retaining 65% of the explained variance, where 

 

2 reaches almost 0.9, while the mean and maximum relative er- 

ors are around only 5% and 14%, respectively (see Supplementary 

aterial SM9 for comparison between ground truth and predicted 
180 
urface). Note, however, that approaches based on mask R-CNN, 

hich extract pixels belonging to the objects of interest, could also 

e used to determine house size. This option was not chosen here, 

ut the results presented above indicate that oriented gradients are 

lso quite efficient to estimate house size rapidly and accurately, 

iven that errors of only ca. 15% (at the most) are perfectly accept- 

ble in our case. Roof size varies between 50 and 440 m 

2 , with a

ean of 136 m 

2 (see Supplementary Material SM10). A total of 1 

27 roofs exceeded 200 m 

2 in surface area ( Fig. 10 b). Interestingly, 

he size distribution of isolated houses appears to be statistically 

ifferent from those belonging to villages, with larger roofs for iso- 

ated houses (KS = 0.1, p -value < 10 −16 for 2-sample Kolmogorov- 

mirnov statistic, see also Supplementary Material SM11 depicting 

umulative distributions for both groups). 
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.6. Cultural implications 

Most traditional houses are in West Sumba ( ∼ 80%), espe- 

ially in the Loli and Wanukaka territories, and to some extent 

n the Wajewa area (see Figs. 8 a and 1 c for ethnolinguistic sub-

ivisions). This distribution tends to follow the implantation of the 

umbanese population, whether the inhabitants live in traditional 

ouses or not (except for the large town of Waingapu). The great- 

st house density is found over Neogene carbonates ( Fig. 1 b), in 

articular on the hilly terrains surrounding the rice fields of the 

aikabubak and Waibakul lowlands, where fertile soils must have 

ttracted populations. In the Loli and Wanukaka territories, ances- 

ral clan-house settlements were often established at the top of 

ills for defensive purposes ( [64] ; see Figs. 8 c and 9 depicting an

rea located to the south of the Waikabubak lowland, where vil- 

ages are massively implanted along the ridges). Another good rea- 

on for building there is that the air is drier than in the lowlands,

lose to the rice fields [29] . Some large villages are also found 

n the Kodi territory, located to the extreme west of the island 

 Fig. 8 c), where the inhabitants exploit the few agricultural plots 

eveloped on coralline limestones ( Fig. 1 b). Other small settle- 

ents are present in the western part of the island, but they have 

ot been identified here, because they are essentially composed of 

ormal (not high-pitched) houses, which do not fulfil the criteria 

o label them as traditional. Today, there is no need for defence, 

o that isolated houses are quite numerous. In West Sumba, they 

ostly correspond to buildings in medium-sized villages, or along 

he main communication routes ( Fig. 8 b 1 ). With the rising stan- 

ard of living, people have progressively left ancestral settlements 

or modern accommodation and related services (e.g. regular water 

upply, salaried employment, etc.). Others have built their homes 

loser to the fields they exploit for practical reasons. These modern 

ouses (“garden houses”) are generally larger and more comfort- 

ble than those originally found in traditional villages. However, 

he break with tradition is only partial as these new houses are 

requently built close to the original village of their owner, and of- 

en imitate traditional Sumbanese style. Around Waikabubak, the 

atio of isolated houses is lower than over the rest of the island 

 Fig. 10 a), suggesting that the ancestral structure of society is more 

revalent there. In East Sumba, the situation is very different. Tra- 

itional houses are scarcer ( Fig. 8 a), except to some extent in the

egion of Lewa, where numerous agricultural fields are exploited. 

he dominance of Neogene clastic sedimentary rocks as bedrocks 

 Fig. 1 b), combined with steep slopes ( Fig. 1 a) and low rainfall

akes the terrains of East Sumba not very productive and diffi- 

ult to exploit. Even where traditional houses are present, they are 

ften scattered in response to environmental constraints, so that 

nly a few traditional villages can be identified ( Fig. 8 c). The po-

itical functions of these villages were, however, not the same as 

n the western part of the island. In the early 20th century, trav- 

llers reported that a single aristocrat assisted by a few vassals 

eigned over the eastern part of the island, while no such cen- 

ralized power existed in the western domain. The sovereign ruled 

ver a strongly stratified society, where possessing slaves was a 

ign of a high-ranking social and economic position. Note that slav- 

ry was abolished in 1860 in the Dutch East Indies, but castes still 

ersist today, despite the effort s of the democratic Indonesian gov- 

rnment. The villages and their activity are still centred on these 

ristocratic houses, whose size and position are clearly related to 

he social standing of their owners, their prestige, political power, 

ealth, and connection to the spirits (see as an example Fig. 2 c, 

epicting an aristocratic house in the foreground of the picture). 

here are virtually no vernacular houses within the two large nat- 

ral parks established in 1998 on the south coast ( Fig. 8 ), which

re predominantly established on volcanic substrates ( Fig. 1 b). Yet 

ome ancient collective graves, testifying to the presence of former 
181 
illages, have been identified here and there. This area has a low 

gricultural potential, and the creation of the two protected areas 

as probably incited the remaining population to abandon the area 

nd to move elsewhere. 

. Conclusion 

Applying an appropriate set of techniques based on machine 

earning can help to bridge the gap between tangible and intan- 

ible heritage, by rapidly producing maps for further spatial analy- 

es undertaken with specific objectives. Nevertheless, it should be 

entioned that the overall quality of satellite imagery is a strong 

imiting factor for applying deep learning in good conditions. Here, 

mages were neither too dark nor too bright, with almost no cloud, 

lways remaining perfectly readable at the highest resolution avail- 

ble (about 0.3 m/px), which is quite sufficient for our purpose. 

ome of the examples provided, however, demonstrate that the pe- 

iod during which satellite images have been acquired may intro- 

uce errors, because the situation is continuously evolving. Note 

lso that if the labelling phase is inadequate or not fully represen- 

ative, the accuracy of detection will be greatly impaired. Whatever 

he precautions taken, the techniques described here inevitably in- 

roduce some false positives and false negatives, which the re- 

earcher will have to manage. Automatic clustering of houses to 

dentify villages implies a choice of settings. Even if the settings 

re appropriate, errors may also be introduced at that step. That is 

hy a solid knowledge of the context is always highly desirable. 

eturning to the field for verification or for further investigation is 

n option that should never be neglected. 

Our attempts to explain the distribution of vernacular houses 

re rendered complex as both environmental and societal factors 

lmost certainly play a role, in competition with recent develop- 

ents in Sumbanese society that are reshuffling the cards. The 

rowing importance of ‘garden houses’ merits particular attention. 

t could be interesting to examine whether the situation of isolated 

ouses without towers is similar, as differences in architecture may 

eflect the personal relationship of the owner to tradition. Further 

esearch could complete the data with surveys over time, or could 

epeat the study on available aerial images, prior to the societal 

hanges mentioned. 

Technically, several types of object detectors are available but, 

eyond this crucial choice, the researcher must be aware that 

ther important parameters may heavily impact the overall perfor- 

ance of the model (output stride, augmentation strategy, etc..). 

he number (and diversity) of instances used for training is among 

hese sensitive variables. In the present case, the experiment 

hows that using more than 10 0 0 instances probably does not 

each the maximum performance score. Nonetheless, it would have 

een absurd to increase the size of the training set to the point of 

abelling almost all the houses that must be detected. This issue 

s a matter of balance, which must be adapted to the problem to 

e solved. Interestingly, using an appropriate deep learning model 

or object detection, followed by a machine learning approach with 

OG values as feature inputs, the size of houses can be estimated 

ith good accuracy. Although the proposed workflow is sufficiently 

fficient here, instance segmentation, which straightforwardly ex- 

racts pixels belonging to houses, could also be evaluated in the 

uture. 

In the light of this summary, a novice might be afraid of the 

echnicity required and the potential difficulties related to practical 

mplementations. It would however be an error because all tools, 

reely available, come with detailed documentation. Even though 

ime will be required during development, the gain will be huge 

or objects to be detected at very large scales, an impossible task 

f done by hand. In the present example, only one single class was 

nvolved, but it is entirely possible to detect several objects, at one 
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nd the same time. The potential of deep learning applied to var- 

ous situations related to the recording (and thus to the preserva- 

ion or the study of the dynamics) of tangible cultural heritage is 

uge. These techniques not only offer a simple increase in record- 

ng capabilities, they provide a whole new order of magnitude for 

esearch perspectives. 
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