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Abstract
The study of pottery surface treatment is essential to understand techniques used by ancient potters, in order to explore the 
cultural and economic organisation of past societies. Pottery is one of the most abundant materials found in archaeologi-
cal excavation, yet classification of pottery surface treatments remains challenging. The goal of this study is to propose a 
workflow to classify pottery surface treatments automatically, based on the extraction of images depicting surface geometry, 
calculated from 3D models. These images are then classified by Deep Learning. Three Convolutional Neural Network algo-
rithms (VGG16 and VGG19 transfer learning, and a custom network) are quantitatively evaluated on an experimental dataset 
of 48 wheel-thrown vessels, created by a professional potter specifically for this study. To demonstrate workflow feasibility, 
six different surface treatments were applied to each vessel. Results obtained for all three classifiers (accuracy of 93 to 95%) 
surpass other state-of-the-art quantitative approaches proposed for pottery classification. The workflow is able to take into 
account the entire surface of the pottery, not only a pre-selected spatially limited area.
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Introduction

Creating artefacts is an essential social activity and there-
fore a key topic for archaeological investigations. Pottery is 
among the most abundant of artefacts and is a medium of 
cultural information that provides valuable evidence of the 
chronology, economics, and development of past societies 
(Shepard 1956; Rye 1981; Orton et al. 1993; Renfrew and 
Bahn 2015). Manufacturing pottery often requires a complex 
sequence of tasks (chaine operatoire), which includes selec-
tion of raw materials, preparation of pottery paste, forming, 
and firing. The chaine operatoire is often investigated by 

means of ethnographic analogies or experimental archae-
ology (e.g. Martineau 2000; Gosselain 2002; Livingstone 
Smith 2007; Roux 2017a, 2017b, 2019).

The surface treatment of pottery is among the final set 
of actions in the forming stage of the chaine operatoire. 
It comprises the operations carried out after shaping and 
before firing (surface treatment in Gibson and Woods 1997, 
pp. 42–44; Santacreu 2014, pp. 82–86; surface finishing in 
Rice 2015, pp. 136–141). It is a set of actions transforming 
the inner and outer vessel surface by friction (e.g. softening, 
burnishing, shining, scratching, and grating) and/or coating 
(e.g. applying clay, graphite, carbon, or organic materials); 
it contributes greatly to the visual quality of the artefact, as 
well as to functional properties such as permeability, higher 
thermal conductivity, and general surface resistance (e.g. 
Kappel 1969; Hlava 2008; Pétrequin et al. 2009; Martineau 
2010, 2013; Venclová et  al. 2013; Roux 2017a, 2017b, 
2019). Recent trends in pottery surface investigations con-
cern identification of the tools and techniques used in pottery 
fabrication (e.g. Forte 2012; Manzaneda et al. 2018; Gaw-
ron-Szymczyk et al. 2020; Melis and Roselló 2021), deter-
mination of pottery function (Forte et al. 2018; Bajeot et al. 
2020), study of pottery craft specialisation (Forte 2019), and 
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phylogenetic analysis of the evolution of ceramic traditions 
(Manem 2020).

Researchers usually describe the topography of pottery 
surface treatment using qualitative categories observable by 
the naked eye, or by stereomicroscope at low magnifica-
tion (e.g. Rye 1981, pp. 89–95; Binder et al. 1994; Gelbert 
2003; Martineau and Maigrot 2004; Thér and Neumannová 
2012; Lepère 2014; Rice 2015, pp. 137–141; Roux 2019, pp. 
195–205). Results are then presented in the form of referen-
tial images. Classifications in archaeology depend not only 
on aspects related to the artefacts under study (e.g. period, 
origin, variability), but also on the methodology used (e.g. 
microscopic or macroscopic observation, paradigm), and 
even on the researcher’s profile (e.g. level of expertise, spe-
cialisation, research history). These factors may sometimes 
lead to discrepancies in the definition and classification of 
the same phenomena observed by different researchers, 
and could perhaps limit the reproducibility of the results 
obtained (e.g. Hodson et al. 1966; Binford 1972; Adams and 
Adams 1991; Orton et al. 1993; Arnold 1999; Di Angelo 
et al. 2018; Cintas et al. 2020). Classifying the enormous 
quantity of artefacts discovered during excavation remains 
time-consuming, whatever the method used, so automating 
the classification process could provide helpful assistance 
for specialists working with pottery artefacts (e.g. Karasik 
and Smilansky 2011; Gualandi et al. 2016; Navarro et al. 
2021).

In order to overcome these issues, many efforts have been 
made to develop solutions for automatic pottery retrieval and 
classification, based on quantitative data, such as vector-
ized drawings, digital photographs, or 3D models. However, 
these studies have focused almost exclusively on the shape 
of the pottery (e.g. Karasik and Smilansky 2011; Gualandi 
et al. 2016; Navarro et al. 2021; Wilczek et al. 2021), and 
to a lesser extent on other aspects, such as colour, paste, 
or decoration (e.g. Bickler 2018; Gualandi et al. 2021). 
The identification of the fabrication and use of an artefact 
based on various quantitative surface parameters has been 
extensively explored for bone (e.g. Legrand and Radi 2008; 
Emery 2009; Buc 2011), and for lithic artefacts (e.g. Stemp 
and Chung 2011; Stemp 2014; Evans et al. 2014; see Stemp 
et al. 2015 for a detailed literature review), but remains rela-
tively rare in investigations of archaeological pottery (Díaz 
Bonilla 2019; Ionescu et al. 2019; Díaz Bonilla et al. 2020; 
Ionescu and Hoeck 2020). These innovative studies select 
zones of interest, identified by the specialist, for microscopic 
inspection. Examining the entire surface of the artefact in 
greater detail could help to provide a more global perspec-
tive on the treatments applied to the pottery surface dur-
ing fabrication. Discrimination between surfaces is based 
on many parameters calculated from distances between 
the surface of the artefact and the plane passing through 
this surface (e.g. root mean square height of the surface, 

maximum height of peaks, maximum height of valleys; see 
ISO 25178 standards; ISO 2012; Blateyron 2013). As the 
archaeological pottery surface, at least at the macroscopic 
scale, is almost never flat, parameter calculation requires 
adapted pre-treatment.

Research aims  Deep Learning (DL) is now increasingly 
used for classification purposes, in almost all scientific 
domains, including archaeology and cultural heritage (e.g. 
Wang et al. 2017; Cintas et al. 2020; Di Angelo et al. 2021; 
Garcia‐Molsosa et al. 2021; Gualandi et al. 2021; Navarro 
et al. 2021). The aim of this article is to present and evaluate 
three DL methods for the automatic identification of pottery 
surface treatments. This workflow is based on the supervised 
classification of images depicting surface geometry of 3D 
models of pottery vessels. One custom and two state-of-the-
art DL algorithms are evaluated on different surface treat-
ments from an experimental dataset. This corpus was spe-
cifically created by a professional potter to test the workflow 
proposed in this study. The use of an experimental dataset 
rather than archaeological fragments allowed full control 
of the data and the classification results, thus demonstrat-
ing the feasibility of the approach proposed. The workflow 
presented here can easily be used by the archaeological 
community, whatever the corpus, in order to acquire new 
knowledge about past societies through the investigation of 
pottery surface treatments.

Material and methods

Test corpus

A test corpus of 48 vessels was created to validate the work-
flow for the automatic identification of surface treatments 
proposed in this study, using a commercially available fine-
grained clay (Witgert company, production designation: 
10 Steinzeugmasse rot). Half of the clay was tempered with 
alluvial sand (20%, grain size < 1 mm); the remaining half 
was tempered with crushed weathered mica schist (20%, 
grain size < 2 mm). To avoid introducing unnecessary varia-
tion by employing several experts, all vessels were produced 
by the same craftsman, a professional potter with over two 
decades of experience in pottery-forming techniques. All 
48 vessels were wheel-thrown, with a simple conical shape 
(Fig. 1; approximate height 15 cm, rim diameter 16 cm, base 
diameter 7 cm).

The spectrum of surface treatments is derived from Late 
La Tène wheel-turned pottery found in Central Europe, 
where six basic types of texturing (Fig. 2), produced either 
by friction or by coating, have so far been identified (Ven-
clová 1998, Fig. 54; Danielisová 2010, P4 Tab. 1). The two 
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types of temper used in this study are also attested in La 
Tène pottery (Thér et al. 2015).

We limited the range of surface treatments used on the 
test corpus to those produced by friction. To introduce an 

outlying factor, a simple decorative technique was applied 
to each vessel (Table 1). To ensure vessel surface regularity 
before treatment, a blade was applied during the last stage 
of wheel-throwing.

Fig. 1   Distribution of surface 
treatments on the vessel. (a) 
Bottom-up view. (b) Side view

Fig. 2   Surface treatments after 
firing for the 6 zones analysed. 
See Table 1 for details
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In the following descriptions, surface treatment classifica-
tions in italics correspond to those used by Venclová (1998, 
Fig. 54). To produce a similar effect to the scratched treat-
ment on La Tène pottery (i.e. shallow, overlapping, irregular 
scratches), a coarse sandstone fragment (12 × 9.5 × 5 cm; see 
Supplementary Materials SM1) was dragged over the vessel. 
This procedure, using a rough-surfaced texturing tool, was 
applied at the wet paste stage (Zone 1), and at the leather-
hard stage (Zone 2). The second treatment, corresponding to 
grated, was produced by scraping the surface with a blade. 
This technique leaves deep, sharply defined, irregular stria-
tions, produced as the blade displaces inclusions in the clay 
(Jansová 1964, p. 185). This procedure could only be applied 
at the leather-hard stage (Zone 3), as the force required to 
scrape the surface with a blade exceeds the strength of the 
vessel wall at the wet paste stage. To introduce a feature very 
different from the rest of the corpus, a zone with a decorative 
element (a continuous wave) was produced by engraving 
the surface with a wooden stick at the wet paste stage (Zone 
4). To produce the treatments classified as smoothed and 
as burnished, a polished agate pebble (4 × 2.5 × 1.3 cm; see 
Supplementary Materials SM1) was rubbed over the sur-
face (e.g. Skibo et al. 1997; Lepère 2014; Roux 2019). To 
produce a smoothed surface, the smoothing procedure was 
applied only once, at the leather-hard stage (Zone 5). To pro-
duce a burnished surface, the procedure was applied in two 
steps: first at the leather-hard stage, for smoothing, then at a 
more advanced stage (between leather-hard and completely 
dry), for burnishing (Zone 6).

The size of each surface treatment zone varied between 
36 and 153 cm2, with a mean area of 82 cm2 (Table 1), which 
is considered sufficient for surface treatment analysis.

After surface treatment, all vessels were fired in an elec-
tric kiln in oxidising conditions up to 800 °C.

3D scanning and mesh segmentation

The experimental dataset (Fig.  3a) was scanned using 
an Artec Spider 3D scanning device with an accuracy of 
0.05 mm, and a 3D resolution of 0.1 mm (Fig. 3b). Only the 
outer surface of the vessels was scanned, as the surface treat-
ment was not applied to the inner surface. Each 3D model 
of a vessel was represented as a triangular mesh composed 
of 7.9 to 10.1 M vertices. Six zones, corresponding to the 
six different surface treatments (Table 1), were manually 
extracted from each 3D model, and labelled by the operator 
(Fig. 3c). A total of 288 meshes (i.e. 6 zones × 48 vessels) 
was thus obtained, each with 0.5 to 2.0 M vertices.

Model preparation

Pottery surface treatments can be identified by surface irreg-
ularity, which corresponds to geometric fluctuation in rela-
tion to a smooth reference surface. Pottery vessels are often 
roughly symmetrical around their rotational axis, which is 
the case for the simple conical vessels in the dataset. Several 
solutions exist for the identification of the optimal position 
of the rotational axis of archaeological pottery fragments, 
based on their 3D models (see e.g., Mara 2006; Karasik 
and Smilansky 2008; Wilczek et al. 2018, and references 
within). Ideally, the distances between the model surface 
and the cone approximating the vessel could be used as the 
pottery surface representation and thus as input in the analy-
ses. However, archaeological pottery is usually not perfectly 
symmetrical and calculation of distances from the perfectly 
symmetrical shape would highlight the fragment’s rotational 
asymmetry and any global deformation of the vessel rather 
than its local surface geometry (Mara 2009).

The local surface geometry of the vessels was therefore 
highlighted by calculating distances between the mesh 
and its smoothed version, obtained by application of the 

Table 1   Description of surface treatments applied to each vessel. See Fig. 1 for details

Zone Technique State of drying Approx. volume of 
water in the paste 
(in %)

Colour code 
for Figs. 3c, 7, 
and 8

Area (min, mean, 
max; in cm2)

Classification of surface 
treatments of La Tène 
pottery (Venclová 1998, 
Fig. 54)

1 Dragging with coarse sandstone Wet paste 30 Brown 41.9, 53.8, 68.5 Scratched
2 Dragging with coarse sandstone Leather-hard 20 Red 43.4, 52.1, 62.8 Scratched
3 Scraping with blade Leather-hard 20 Yellow 35.6, 51.9, 65.3 Grated
4 Wave engraved with wooden 

stick
Wet paste 30 Green 71.1, 126.4, 152.8 Grooved

5 Smoothing with agate pebble Leather-hard Cyan 89.8, 108.3, 132.5 Smoothed
6 Smoothing with agate pebble Leather-hard 20 Blue 83.8, 100.5, 127.5 Burnished

Burnishing with agate pebble Nearly dry 15
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Laplacian filter (99 iterations; Fig. 4a–c; Freitag 1997; 
Amenta et al. 1999). This filter suppresses high frequen-
cies and is well adapted to meshes with non-uniform tri-
angles. The distances expressed by different colours were 
then used as the texture of the 3D model (Fig. 4d). Colour 
representation was preferred to greyscale, as classification 
algorithms applied in the study use RGB images as inputs by 
default (see the “Deep Learning classification algorithms” 
section). The colour scheme applied here for visualisation of 

distances was chosen to maximise image information con-
cerning deviation from the smoothed (reference) surface.

Image generation

A set of 240 randomly overlapping images was acquired 
from each mesh, by imitating the process of aerial ortho-
photography acquisition. Each image, taken perpendicu-
larly to the surface, at 150 × 150 px resolution, with Field 

Fig. 3   Data acquisition and preparation. (a) Photograph of vessel. (b) 3D model of vessel. (c) 3D model manually segmented into 6 different sur-
face treatment zones. For colour code, see Table 1. Note that the vessel is oriented 180° around the rotational axis in relation to Fig. 1b

Fig. 4   Analysis of a given zone. (a) Mesh. (b) Smoothed version. (c) Superimposition of (a) and (b). (d) Distances between (a) and (b), 
expressed by a colour scale. (e) Extraction of an image perpendicular to the mesh surface, showing distances expressed by a colour scale
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of View (FOV) set to 0, covered an area of approximately 
1 cm2 (Fig. 4e).

A total of 69,120 images (i.e. 288 meshes × 240 images) 
was generated by this process. Images with surface borders 
were then filtered out from the dataset, and the number of 
images within each surface treatment group was equal-
ised. The final image dataset thus created contained 52,200 
images (6 surface treatment groups, each composed of 8700 
images).

Although acquiring images from 3D models may be less 
rapid than digital photography (e.g. Gualandi et al. 2021), 
images generated from 3D models should be less affected 
by variations in illumination, as the illumination model used 
to generate the 3D scene can be controlled (e.g. Nicodemus 
1965; Gouraud 1971; Phong 1975). Images generated only 
from the surface geometry of the 3D model are not affected 
by the original colour of the fragment, which may be related 
to other factors (e.g. clay type, firing, and/or soil composi-
tion where the pottery was found).

Deep Learning classification algorithms

Deep Learning algorithms are based on Artificial Neural 
Networks (ANNs), which mimic the way in which the brain 
responds to sensory stimuli, by modelling the relationship 
between input and output signals. A typical artificial neuron 
can be represented as:

where n is the number of input variables x ; w represents 
input variable weighting; f (x) is the activation function, and 
y(x) is the output variable.

In the case of image classification, inputs correspond to 
RGB channel values stored in the image array, and outputs 
are the labels of the desired class. The activation function 
is used for better adaptation of the signal to the mathemati-
cal characteristics of the network. The optimisation process 
then estimates the optimal weights to minimise differences 
between expected and observed outputs.

A Convolutional Neural Network (CNN) is generally used 
for image classification, and it usually contains three types 
of layers: convolutional, pooling, and fully connected. The 
lower levels of the CNN seek to reduce input data complex-
ity by applying filters (convolutional layers), and by down-
sampling matrices (pooling layers). Fully connected layers 
learn a more abstract representation of the processed data, 
and are found in the upper levels of the network. Lower lay-
ers of CNN usually extract colour information and edges, 
while upper layers account for shape and texture. The 
final classification layer contains the loss function, which 

y(x) = f

(

∑n

i=1
wixi

)

transforms the input data into the corresponding output (e.g. 
LeCun et al. 2015; Gu et al. 2017; Wang et al. 2020).

A CNN usually requires a considerable number of anno-
tated images and an adequate amount of time for accurate 
training. To reduce calculation time, ‘transfer learning’ uses 
a model pre-trained on a huge image dataset (i.e. hundreds of 
labels and millions of images) for another image classifica-
tion task, as such a model is considered to contain features 
general enough to be adapted to almost any dataset (Pan and 
Yang 2010). The transfer learning process has sometimes 
been found more effective than training the CNN model 
from scratch (Tajbakhsh et al. 2016). However, as each 
pre-trained CNN model is specific to a given classification 
task and to the dataset it was trained on, the final layers of 
this model need to be re-trained and fine-tuned on the new 
dataset, to integrate new images and classes (Yosinski et al. 
2014).

Three CNN models were used to classify pottery surface 
treatment images. The first two models are among the most 
popular CNN models used for image classification: VGG-
16 and VGG-19, developed by the Visual Geometry Group 
Lab, Oxford University (Simonyan and Zisserman 2015). 
The 13 (VGG-16) or 16 (VGG-19) convolutional layers are 
followed by 3 fully connected layers (Fig. 5a–b). The par-
ticularity of these models is that the convolutional layers use 
very small 3 × 3 filters, and the volume of data is reduced by 
2 × 2 max-pooling layers. All hidden layers contain Rectified 
Linear Units (ReLUs; Krizhevsky et al. 2017). At the end 
of the model, two of the fully connected layers have 4096 
nodes each, followed by the final softmax classifier (Gao and 
Pavel 2018). Both VGG-16 and VGG-19 were pre-trained 
on the ImageNet dataset, containing 1.4 M images and 1000 
classes (Russakovsky et al. 2015). As the ImageNet dataset 
consists of images (e.g. dogs, cats, and cars) very different 
from those analysed in this study, the last three layers of the 
models were re-trained on the pottery surface treatment data-
set. The third model was defined and trained from scratch. 
This rather simple Custom CNN model was composed of 
4 convolutional layers, followed by 2 fully connected layers 
(Fig. 5c; Chollet and Allaire 2018; Ghatak 2019). As with 
the VGG architecture, the convolution layers use 3 × 3 fil-
ters and are reduced by 2 × 2 max-pooling layers. All hidden 
layers use ReLU activations, except the final classification 
layer, which uses softmax.

Image pre‑processing and training

Image RGB channel values were standardised to [− 1,1]. 
To increase robustness and avoid overfitting, the diversity 
of the training dataset was augmented by applying sev-
eral random transformations (i.e. rotation, shear, zoom, 
and horizontal flip). Table 2 shows the range of values 
selected: the higher range of the rotation parameter was 



Archaeological and Anthropological Sciences           (2022) 14:85 	

1 3

Page 7 of 15     85 

chosen to take into account the fact that fragment orienta-
tion (i.e. its position according to the rotational axis) is 
considered to be unknown.

The dataset of 52,200 images, depicting 288 meshes, 
was randomly split into a training subset containing 
36,540 images (70%), a validation subset of 10,440 
images (20%), and a testing subset of 5220 images (10%).

Four commonly used optimisers, Adam (Kingma and 
Ba 2017), Adadelta (Zeiler 2012), Adamax (Kingma 
and Ba 2017), and Stochastic Gradient Descent (SDG; 
Ruder 2017), and four dropout regularisations (0, 0.1, 
0.3, and 0.5) were tested on the dataset to identify the 
optimal combination of (i) optimisation method, allowing 
accurate estimation of weights in deep networks, and (ii) 
regularisation, to prevent overfitting. All models were 
trained for 50 epochs with the image batch size set to 32. 
Performance scores were evaluated on accuracy, defined 
as the ratio of correct predictions over the total number 
of images.

Classification visualisation

The procedure can classify each vertex on the 3D model 
surface based on the class of the image in which the vertex 
is visible. When the vertex is visible in multiple images 
classified in different groups, the class of the vertex can be 
given by majority voting, i.e. based on the most frequent 
class of images containing the vertex. This procedure can 
also highlight, or omit, vertices that cannot be classified 
unambiguously, e.g. those for which the frequencies of 
votes for different classes are almost equal.

Software and hardware

The Artec Studio Professional software (version 15) was 
used for 3D mesh production. The Meshlab software 
(Cignoni et al. 2008) was used for model segmentation. 
Surface treatment images were generated by a script 
encoded in the R programming language (R Core Team 
2021), using the ‘rgl’ (Adler and Murdoch 2021) and 
‘Rvcg’ (Schlager 2017) libraries. Supervised classifica-
tion was produced in Python (Python Software Founda-
tion 2021), with the ‘numpy’ (Harris et al. 2020), ‘pan-
das’ (McKinney 2010), ‘keras’ (Chollet et al. 2021), and 
‘tensorFlow’ (Abadi et al. 2016) libraries. A consumer-
grade computer (Intel Core i7-4712HQ—2.50 GHz, 16 
Go DDR3, NVIDIA GeForce GTX 980 M) was used for 
calculations.

Fig. 5   Description of Deep Learning architectures. (a) VGG-16. (b) VGG-19. (c) Custom CNN

Table 2   Range of values selected for image augmentation in the 
training subset

Transforma-
tion

Rotation Shear Zoom Horizontal 
flip

Range [−90
o
,+90

o
] [−0.2,+0.2] [−0.2,+0.2] [True, False]
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Results and discussion

Classification evaluation

The classification accuracy of DL models applied to the test 
dataset varied between 83.3 and 94.5%, depending on the 
choice of optimiser and dropout value (Table 3). The best 
results for each DL model were obtained using the Adamax 
or SGD optimisers with little or no dropout regularisation. 
The pre-trained VGG19 yielded the best performance, fol-
lowed by VGG16, and Custom CNN. After tuning, the very 
slight difference in accuracy (ranging from 93.4 to 94.5%) 
suggests that all three models are suitable classifiers, but 
also that the dataset and procedure are fit for purpose, and 
well able to answer the question of surface treatment clas-
sification. Each surface treatment (scratched (wet paste), 
scratched (leather-hard), grated, grooved, smoothed, bur-
nished; see Table 1) has its own clearly identifiable geom-
etry (Fig. 2). Although VGG16 and VGG19 present a slight 
gain in precision, Custom CNN achieves faster learning, as 

the number of parameters to be estimated is approximately 
44 times smaller (see also Table 4). It should be noted that 
each classification model will produce slightly different 
classification outputs. Examining outputs both visually and 
quantitatively for each classification may prove to be the 
optimal solution.

Classification performance is similar to that obtained 
for the shape classification of pottery vessels into several 
groups (Table 5), or for the pixelwise binary classification 
of archaeological structures based on images obtained by 
drone, which was an easier task (Monna et al. 2020). The 
classification performance is similar to that based on the 
statistical treatment of a set of 30 surface parameters calcu-
lated from raster images of experimental samples obtained 
by laserscanning confocal microscopy (Díaz Bonilla et al. 
2020). Representing the distance of the mesh from its 
smoothed version, encoded as RGB images, may thus be 
considered to provide useful information for surface treat-
ment differentiation. It should therefore be possible, if and 
when required, to supplement or complement the more pre-
cise but more costly and more local microscopic approach 
with the workflow presented here.

An example of classification output can be seen in 
Table 6, showing very little overlap between zones. Fewer 
than 250 out of 5220 cases (i.e. only 4.7% of cases) were 
misclassified, due to occasional confusion between zones 
where identical techniques were applied: Zones 1 and 2 
(scratched surface treatment) both used coarse sandstone 
dragging, but at different drying stages; Zone 5 (smoothed) 
and Zone 6 (burnished) both used agate rubbing, but at dif-
ferent drying stages. Such cases can usually be distinguished 
by the expert in a given pottery assemblage, but it is often 
difficult and time-consuming to transfer this expertise to a 
different dataset. Macroscopic observations confirm that 
very similar traces are sometimes found on meshes repre-
senting different surface treatments (Fig. 6: A1, A2, B1, B2). 
Another potential cause of misclassification is the great vari-
ety of traces for a given type of surface treatment (Fig. 6: A3, 
B3; see Supplementary Materials SM2 for more examples). 
These recurring issues are intrinsic to all approaches seeking 
to classify or differentiate between real-world phenomena, 
such as archaeological pottery surface treatments. While the 
researcher will often focus on a specific descriptor and zone 
to differentiate between surface treatments, DL algorithms 

Table 3   Comparison of surface detection accuracy on the test sub-
set, using 3 Deep Learning algorithms (in %). The mean accuracy 
and standard deviation (shown in parentheses) were calculated from 
the last 10 epochs. The highest mean accuracy for each model-opti-
miser pair is highlighted in bold. The highest mean accuracy for each 
model-optimiser-dropout triplet is highlighted in bold italic. D drop-
out, SGD Stochastic Gradient Descent

Model Optimiser D = 0.0 D = 0.1 D = 0.3 D = 0.5

Custom 
CNN

Adam 91.8 (0.9) 92.4 (0.6) 90.8 (1.0) 91.3 (0.7)
Adadelta 85.1 (0.3) 83.3 (0.4) 83.7 (0.2) 83.9 (0.3)
Adamax 93.4 (0.6) 93.2 (0.5) 92.7 (0.8) 92.5 (0.9)
SGD 89.4 (0.7) 90.1 (1.0) 89.5 (1.7) 90.2 (0.9)

VGG16 Adam 92.2 (1.3) 91.2 (1.3) 91.6 (1.3) 87.5 (2.5)
Adadelta 92.9 (1.1) 93.1 (0.8) 92.7 (0.7) 93.1 (0.9)
Adamax 92.7 (1.4) 93.7 (0.7) 93.1 (1.0) 93.1 (1.3)
SGD 92.4 (1.7) 92.8 (1.7) 92.9 (1.1) 93.1 (0.9)

VGG19 Adam 91.8 (1.6) 90.3 (1.8) 88.8 (2.8) 88.0 (1.3)
Adadelta 92.3 (1.5) 92.6 (1.4) 92.7 (0.7) 92.3 (0.5)
Adamax 93.2 (1.2) 93.2 (1.4) 92.5 (1.3) 93.0 (0.8)
SGD 93.7 (1.5) 94.5 (0.9) 93.9 (0.7) 93.3 (1.9)

Table 4   Overview of the 
algorithms used for the 
automatic classification of 
pottery surface treatments

Model Number of layers (convo-
lutional / fully connected / 
total)

Total number 
of parameters

Trainable parameters Image input size

Custom CNN 4 / 2 / 6 3,455,686 3,455,686 150 × 150
VGG16 13 / 3 / 16 138,357,544 130,722,280 224 × 224
VGG19 16 / 3 / 19 143,667,240 133,082,088 224 × 224
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identify a variety of features from the images under analysis 
(here, several thousands of images).

Classification visualisation

An example of classification based on majority voting can 
be seen in Fig. 7. In practice, the specialist would naturally 
seek to classify only areas or surfaces classified by the model 
as a homogenous surface treatment. Most surfaces are very 
well predicted: the surface treatment class corresponds to 
the original class of the mesh (Fig. 7a). Surfaces for which 
the procedure proposes several different classes can easily 
be identified (e.g. Figure 7b: A2, A5, D1, E1), and may then 
be more closely inspected by the specialist.

Classification error can be minimised by setting the mini-
mum probability value, � , above which the image is consid-
ered to be classifiable. By default, the image is automatically 
attributed to a class based on the highest probability value. 
In an ideal situation, this choice can increase the accuracy 
of the output (e.g. Candila and Palazzo 2020; Wilczek et al. 
2021). Table 7 shows the percentage of classifiable vertices, 
and the accuracy of attribution, with increasing � values. For 
example, with a probability of � = 0.95 , approximately 83% 
of vertices can be classified, with very high accuracy (here, 
99.0%). Visual inspection of classification outputs obtained 
with higher � values indicates that incorrectly classified 
vertices are often filtered out (Fig. 8). Tuning the � value 
can thus help a specialist to improve classification output in 
other situations.

Table 5   Comparison with the literature. Abbreviations: CNN Convolutional Neural Network. Note that Top3 and Top5 accuracy is not given for 
this study, as prediction is based on a smaller number of classes

Classification 
applied to

Data Methods Number of samples Classes Accuracy (%) Top1/
Top3/Top5

Reference

Surface treatment Raster images CNN 52,200 6 93–95/-/- This study
Surface treatment Raster images 

obtained by laser-
scanning confocal 
microscopy

Discriminant 
analysis calculated 
on 30 surface 
parameters

240 6 85/-/- Díaz Bonilla et al. 
(2020)

Decoration Raster images CNN (transfer 
learning using 
ResNet-50)

8000 augmentation 
to 100,000

65 -/-/77–84 Gualandi et al. (2021)

Pottery fragments 
based on shape

Profile coordinates CNN (PointNet 
derivative, 
PointNet +  + , 
PointCNN)

435 + 240 (?) 65 70–80/-/- (synthetic 
data) 2–22/-/8–58 
(real-world data)

Pottery rim frag-
ments based on 
shape

Profile coordinates Iterative Closest 
Point

319 14 82/93/96 Wilczek et al. (2021)

Complete vessels 
based on shape

Profile coordinates Ramer-Douglas-
Peucker polyline

1133 11 87/98/99 Lucena et al. (2016)

Complete vessels 
based on shape

Raster images CNN 1133 11 90/-/- Cintas et al. (2020)

Complete vessels 
based on shape

Raster images Pro-
file coordinates

CNN (transfer 
learning using 
ResNet-18)

1282 11 96/-/- Navarro et al. (2021)

Table 6   Confusion matrix 
(see Table 3 for model triplet 
details). Correctly classified 
samples are highlighted in bold

Observed (classified by VGG19-SGD-D0)

Zone 1 2 3 4 5 6

Expected  
(original)

1 793 77
2 76 794
3 4 866
4 870
5 1 3 781 85
6 4 866



	 Archaeological and Anthropological Sciences           (2022) 14:85 

1 3

   85   Page 10 of 15

The high level of classification accuracy indicates that the 
DL algorithms learned to recognise ‘the hand of the potter’ 
who crafted the experimental dataset. It would be tempt-
ing to apply this classification approach directly to archaeo-
logical pottery fragments, but a classification model cannot 
be expected to identify surface treatments that it has never 
encountered. The surface treatment traces produced for this 
study by a professional potter did not reproduce all the tech-
niques used to craft ancient pottery artefacts. Furthermore, 
the classification models tested here were trained on a data-
set containing simple conical shapes, with no attempt to rep-
resent all the possible forms that exist among ancient pottery 
artefacts. Classifying the broad spectrum of ancient pottery 
production would require a much larger dataset, specifically 
tuned and adapted to the research question.

Concluding remarks

The goal of this pilot study was to show the feasibility of the 
DL approach. The procedures explored here map out a work-
flow that can be adapted to a broad variety of archaeological 
contexts: for example by working directly with a corpus of 

pre-annotated ancient fragments. The experimental data-
set itself could also be expanded by adding more vessels, 
by increasing shape variability, and by integrating vessels 
crafted by other potters, to introduce more variability in sur-
face treatment traces. Although the workflow was tested on 
wheel-thrown pottery, it should also be suitable for use with 
hand-made production.

Digital imaging and artificial intelligence are dynamic 
domains providing powerful solutions for classification in 
many scientific fields. To classify pottery surface treatments, 
this study evaluated three Deep Learning algorithms, two 
of which are based on transfer learning. All three methods 
yielded very good results (93–95% accuracy for a classifica-
tion with 6 groups), among the highest scores so far achieved 
for classification problems related to archaeological pot-
tery investigations. Classification accuracy can be further 
increased by taking into consideration only surfaces with 
high classifiability, thus opting for confidence over quantity. 
This fact may provide a practical solution for the routine 
work of surface treatment classification. Results obtained by 
such procedures may provide reliable guidance for surface 
identification, and may be used as a complement to the vis-
ual expertise of the specialist in the interpretation of traces.

Fig. 6   Examples of meshes, showing distances between the mesh and its smoothed version represented by a colour scale (see Fig. 4 for details). 
Zones 1, 2, and 3 indicate surface treatments (see Table 1 for details). See Supplementary Materials SM2 for more examples
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One of the advantages of the workflow presented 
here is that it can analyse the entire surface of the ves-
sel. By expanding the focus of the analysis, previously 
overlooked elements can be brought to light. Analysing a 
broader surface makes quantification more reliable, pos-
sibly leading to the identification of specific techniques 
used or shared by a potter, a workshop, a household, or a 
community. The method of visualisation proposed here 
may facilitate the sharing of ideas and strategies with 

respect to classification among the broader archaeologi-
cal community. Here, classification used images that 
measured approximately 1 cm2. Although meaningful 
results were obtained at this resolution, the workflow 
can easily be adapted to classify features at any other 
macro- or microscopic scale. Although applied here for 
the classification of surface treatment, the same approach 
can also be used to classify other aspects of pottery (clay, 
decoration, etc.), and other archaeological artefacts 

Fig. 7   Examples of visual outputs for the classification of surface 
treatments obtained with VGG19-SGD-D0. (a) Complete vessel col-
our-coded by surface treatment. (b) Meshes corresponding to surface 

treatment zones colour-coded by surface treatment. When the pre-
dicted surface possesses the same colour (i.e. class) as the original, 
the classification is correct. See Table 1 and Fig. 1 for details

Table 7   Classification of vertices based on minimum probability 
value ( � ). The VGG19-SGD-0 classification model was used here. 
Vertices were judged classifiable only if the probability of image clas-

sification was higher than � . Accuracy indicates the percentage of 
vertices judged classifiable that were attributed to the correct group

� 0.50 0.60 0.70 0.80 0.90 0.95 0.99

Classifiable (%) 100.0 98.0 96.8 92.8 87.7 83.4 70.9
Accuracy (%) 95.2 96.0 96.8 97.6 98.4 99.0 99.7
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(weapons, tools, jewellery, etc.), based on the surface 
geometry of 3D models.

All the approaches presented here are easily reproducible 
by freely available software and/or packages (e.g. R, Python, 
Keras, TensorFlow), which can be adapted for routine use 
by archaeologists. The dataset of labelled images used for 
classification is made available to the broader scientific com-
munity via Github (https://github.com/jwilczek-dotcom) for 
further testing and benchmark comparison.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12520-​022-​01501-w.
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