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a b s t r a c t

Background: Obstructive sleep apnea (OSA) remains massively underdiagnosed, due to limited access to
polysomnography (PSG), the highly complex gold standard for diagnosis. Performance scores in pre-
dicting OSA are evaluated for machine learning (ML) analysis applied to 3D maxillofacial shapes.
Methods: The 3D maxillofacial shapes were scanned on 280 Caucasian men with suspected OSA. All
participants underwent single night in-home or in-laboratory sleep testing with PSG (Nox A1, Resmed,
Australia), with concomitant 3D scanning (Sense v2, 3D systems corporation, USA). Anthropometric data,
comorbidities, medication, BERLIN, and NoSAS questionnaires were also collected at baseline. The PSG
recordings were manually scored at the reference sleep center. The 3D craniofacial scans were processed
by geometric morphometrics, and 13 different supervised algorithms, varying from simple to more
advanced, were trained and tested. Results for OSAS recognition by ML models were then compared with
scores for specificity and sensitivity obtained using BERLIN and NoSAS questionnaires.
Results: All valid scans (n ¼ 267) were included in the analysis (patient mean age: 59 ± 9 years; BMI: 27
± 4 kg/m2). For PSG-derived AHI�15 events/h, the 56% specificity obtained for ML analysis of 3D
craniofacial shapes was higher than for the questionnaires (Berlin: 50%; NoSAS: 40%). A sensitivity of 80%
was obtained using ML analysis, compared to nearly 90% for NoSAS and 61% for the BERLIN question-
naire. The auROC score was further improved when 3D geometric morphometrics were combined with
patient anthropometrics (auROC ¼ 0.75).
Conclusion: The combination of 3D geometric morphometrics with ML is proposed as a rapid, efficient,
and inexpensive screening tool for OSA. Trial registration number: NCT03632382; Date of registration:
15-08-2018.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Obstructive sleep apnea (OSA) is defined as recurrent episodes
of upper airway obstruction during sleep [1]. Diagnosis of OSA is
Grenoble, CS, 10217 38043,

n).
mainly based on respiratory indices, such as apneas and hypopneas,
measured by full polysomnography (PSG). Considered as the gold
standard, PSG remains a cumbersome diagnostic method, resulting
in limited and therefore inequitable access to care. The PSGmethod
requires scoring expertise, and data interpretation is time-
consuming. Due to these limitations, the worldwide health sys-
tem faces a challenging situation, with an OSA population of
approximately 1 billion patients, and a still undiagnosed popula-
tion, estimated at over 30 million in Europe alone [2e4]. The
considerable social and economic impacts of OSA [5] create a
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Abbreviations

AASM American Academy of Sleep Medicine
AHI Apnea-Hypopnea Index
auROC area under the Receiver Operating Characteristic

curve
BMI Body Mass Index
GPA Generalized Procrustes Analysis
HTA Hypertension
ICSD International Classification of Sleep Disorders
OSA Obstructive Sleep Apnea
PCA Principal Component Analysis
PCs Principal components
PSG Polysomnography
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pressing need to resolve this diagnostic bottleneck.
The pathophysiology of OSA results from anatomical upper

airway narrowing, and from reduced pharyngeal dilator muscle
activity during sleep [6,7]. Specific craniofacial profiles have been
identified as being associated with reduced upper airway size, so
that patient morphologymay be considered a relevant predictor for
OSA [8e10]. Abnormal maxillofacial characteristics typically linked
to OSA are a long face [11,12], together with mandibular progna-
thism or retrognathism [12e16]. Imaging techniques including
cephalometry [13,16], computed tomography [17,18], magnetic
resonance imaging [9,19e21], and digital photography have been
developed to map these craniofacial structures [22]. Recently, 2D
and 3D scans have been used to characterize maxillofacial structure
[23e25]. It has been shown that 3D photography allows the
assessment of facial characteristics as an alternative to MRI [26].
Another study confirmed that 3D photography is strongly corre-
lated with 3D computed tomography (CT) [25]. With the emer-
gence of artificial intelligence, several tools have been developed to
improve OSA prediction [27,28]. Machine learning (ML) and deep
learning models have been used to identify OSA patients based on
2D and 3D photographs [28,29].

Here, taking as reference the results obtained by PSG, the pri-
mary objective was to investigate the reliability of OSA diagnosis
obtained by the 3D geometric morphometric analysis of maxillo-
facial scans, combined with ML analysis. The novelty of this study is
that the dataset consists of the entire 3D surface, not only the
frontal and profile images, or depth maps. Another originality is
that a data-driven approach based onML analysis can be performed
in 10 min, economizing both time and resources. The secondary
objective was to compare these results with the performance
scores obtained with two questionnaires: the Berlin [30,31], and
the NoSAS [32,33].
Fig. 1. Position of the 7 landmarks on a typical 3D model. Colored targets are manually
placed at LM5, LM6, and LM7 before scanning.
2. Materials and methods

2.1. Study design

The EPISASmonocentric prospective studywas conducted at the
Grenoble Alpes University Hospital from 2018 to 2020. The study
was registered on Clinicaltrials.gov (NCT03632382). Consecutive
adult Caucasian men (age�40) with suspected OSA, referred for
gold standard PSG, were invited to participate. Exclusion criteria
were previous maxillofacial interventions or dental malocclusion,
body mass index (BMI) �35 kg/m2, or a thick beard (impeding
maxillofacial characterization). All participants signed written
informed consent.
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2.2. Data collected at inclusion

Patient anthropometric and comorbidity data were collected.
Berlin and NoSAS questionnaires were also completed. Scores of at
least two out of three for BERLIN [30,31], and eight for NoSAS
[32,33], were considered as OSA predictors (e-Fig. 1 and e-Fig. 2).
2.3. Polysomnography (PSG)

Nocturnal in-home or in-lab PSG was performed with a Nox A1
polygraph (ResMed, Australia). Sleep measurements were recorded
using sensors for airflow, respiratory effort, snoring, SaO2, eye and
leg movements, chin electromyography (EMG), the electrical ac-
tivity of the heart (ECG) and brain (EEG), following American
Academy of Sleep Medicine (AASM) recommendations for good
practices [34]. The PSG signals were manually scored by experts
from the Grenoble Alpes University Hospital, France, following the
criteria recommended by the AASM [35]. Apnea was defined as a
complete cessation of airflow lasting 10 s or longer and was clas-
sified as obstructive, central, or mixed, depending on the presence
or absence of respiratory effort. Hypopnea was scored using the
AASM definition, requiring at least a 30% reduction in airflow
lasting 10 s or longer, and associated with a decrease of at least 3%
in oxygen saturation, as measured by pulse oximetry, or arousal
[35,36]. Diagnosis of OSA was established according to the Inter-
national Classification of Sleep Disorders, 3rd edition [37]. The sleep
apnea diagnostic threshold was set at 15 events/h.
2.4. 3D geometric morphometrics of the craniofacial and
submandibular structure

2.4.1. Acquisition
To characterize properly the geometry of the neck and the

submandibular area, all 3D scans were acquired at the Grenoble
Alpes Hospital by the same clinical research assistant, who was
specifically trained for the present study. A hand-held commercial
scanner, Sense v2 (3D systems USA), was used to generate 3D
maxillofacial models with a resolution and precision of 1e2 mm.
Seven landmarks were established on the 3D models (Fig. 1). Four
were easily identified: one at each earlobe (LM1, LM3), one at the
nasal bridge (LM2), and one at the tip of the chin (LM4). As no
obvious landmarks could systematically be identified to constrain
the lower part of the area of interest, a colored target was placed on
each acromioclavicular joint (LM5, LM7), with a final target on the
sternal fork (LM6).

Between-subject consistency for head position was ensured
using a mount equipped with bubble levels (Fig. 2A) to maintain
the horizontality of the plane passing through the upper part of the
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Fig. 2. The prototype ensuring the horizontality of the reference plane on both axes. A: the mount with bubble levels; B: an example of use; C: the slot on the side of the frame
allows the eyes to be aligned.
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ears and the eyes (Fig. 2B). A slot in the eyeglass frame was used to
align the eyes (Fig. 2C).

Each participant had to raise, lower, or incline his head until the
horizontality of this plane was reached, and a neutral facial
expression was required. At 18 different times during the entire
period of data collection, a member of the technical staff was
scanned to compare the repeatability of the acquisition procedure
with the naturally occurring variations observed within the patient
cohort. The entire 3D scanning procedure lasted about 10 min.

2.4.2. Data preparation
The 3D scans were cleaned and repaired to eliminate any

unreferenced vertices, non-manifold edges, and small disconnected
parts. The resulting models were saved in PLY format, which is a
common polygon file format describing 3D objects as a collection of
vertices, faces, and other associated elements, such as normal di-
rection, color, etc. Structurally, it encompasses a file header, the
vertex, the face lists, and the attached elements [38]. The seven
landmarks (LM1 to LM7, Fig. 1) were manually positioned on the
textured meshes. Their 3D coordinates were then used to align all
patient meshes in a common space, using a Generalized Procrustes
Analysis (GPA) [39], applying bilateral symmetry for LM1 and LM3,
the pair located under the ears, and for LM5 and LM7, the pair on
the acromioclavicular joints [40]. Note that size is eliminated at this
step. A mesh close to the mean shape was used to build the atlas of
semi-landmarks (n ¼ 500) on a surface constrained by the seven
landmarks (Fig. 3A). This atlas was projected onto the surface of the
other meshes using the seven landmarks as reference (Fig. 3B), to
capture soft tissue geometry as accurately as possible [41], in
particular for the neck, where no clear landmarks are present. To
favor homology, the semi-landmarks were allowed to slide, mini-
mizing the total bending energy of the thin plate splines, before
being reprojected onto the mesh surfaces [42]. A GPA was then
applied to re-align all meshes, using not only the seven original
landmarks but also the 500 slid semi-landmarks.
Fig. 3. Atlas production and projection onto the mesh surfaces. A: restriction of the area of
atlas is projected onto all meshes (in red) and allowed to slide (in blue). (For interpretation of
this article.)

78
2.4.3. Dimensionality reduction
A total of 507 points was available to characterize each patient's

maxillofacial shape. To reduce the number of variables, while
maintaining a proper description of between-individual geometric
variation, a principal component analysis (PCA) was computed on
the Procrustes-aligned coordinates after their projection onto the
space tangent to the mean shape. The first 3 principal components
(PCs) expressed over two-thirds of the total variance, while 95% of
the total variance was captured with only 20 PCs. In the following,
several tests are presented to assess the smallest number of PCs
required for optimal OSA prediction.
2.5. Machine learning algorithms and performance scores

2.5.1. Underlying idea
An AHI threshold of 15 events/h (measured by PSG) was used to

define the presence or absence of OSA. The goal was to build a
supervised mathematical model (i.e. a decision rule) where this
binary condition (yc, with c 2 [0,1] for negative OSA and positive
OSA, respectively) must be predicted from x, a vector correspond-
ing to the m shape descriptors retained, expressed in the form of
PCs, x ¼ {PC1, …, PCm}. A total of 11 classifiers was tested, from the
simplest to the most sophisticated: naive Bayes, linear and
quadratic discriminant analyses (LDA & QDA), k-nearest neighbors
(k-NN), support vector machine (SVM) with different kernel types
(linear, polynomial, or using a radial basis function, namely rbf),
extra trees, random forest (RF), artificial neural network (ANN),
adaptative boosting (AdaBoost), and extreme gradient boosting
(XGBoost). The underlying principles of these ML algorithms
applied to binary classification can be found in many textbooks
[43e45]. Note that other descriptors, such as anthropometric var-
iables and symptoms, were later introduced into the analysis using
XGBoost because this algorithm can also process categorical
variables.
interest using the 7 landmarks, template for an atlas with 500 semi-landmarks; B: the
the references to color in this figure legend, the reader is referred to the Web version of
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2.5.2. Model performance
A nested cross-validation method was used to evaluate model

performance [46]. It divides the cohort into several parts (here 4),
used for the outer loop. Sequentially, each of these parts is used for
evaluation, with the remainder used for training. For training and
hyperparameter tuning, the data are further divided into several
parts (here also 4), used for the inner loop. All individuals are thus
used alternately either for training or for evaluation, so that per-
formance estimates are expected to be almost without bias [47].
The area under the receiver operating characteristic curve (auROC)
was used as the main performance metric for classification, but
specificity and sensitivity are also reported, for information.
2.6. Practical implantation

Morphometric data were prepared with the R v3.3 program-
ming language (https://www.r-project.org/), using mainly the
Morpho [48] and geomorph packages [49]. The ML phase was
carried out with a homemade snippet programmed under Python
3.7 (https://www.python.org/), using the scikit-learn (https://
scikit-learn.org) and XGBoost (https://xgboost.readthedocs.io/) li-
braries. Mesh cleaning was performed using the free Meshlab
software (https://www.meshlab.net/).
3. Results

3.1. Study flow and population

Of the 1251 patients screened, only 280 were suitable for
Table 1
Description of the population at baseline (n ¼ 267). AHI: Apnea-Hypopnea Index;
BMI: Body Mass index; COPD: Chronic Obstructive Pulmonary Disease; IDM:
myocardial infarction; ESS: Epworth Sleepiness Scale.

Variables n (%)mean [min; max]

Sex: M 267 (100%)
Age (yr) 59.2 [40e75]
BMI (kg/m2) 27 [18.3e35.1]
AHI (events/h) 23.7 [0.5e99.5]
Mallampati Class
1 26 (9.7%)
2 96 (35.9%)
3 95 (35.5%)
4 50 (18.7%)

Neck circumference (cm) 40.3 [34e48]
Waist circumference (cm) 101.4 [71e182]
Hip circumference (cm) 101.9 [78e131]
AHI (events/h) 23.7 [0.5e99.3]
BERLIN score �2 153 (57.3%)
NoSAS score �8 63 (23.6%)
ESS 9 [0e24]
Comorbidities
Hypertension 107 (40.1%)
Coronary heart disease 20 (7.5%)
Stroke or transient ischemic attacks 49 (18.4%)
Heart failure 23 (8.6%)
IDM 37 (13.8%)
Arrhythmia 24 (9%)
Other cardiovascular disease 10 (3.7%)
Cancer 10 (3.7%)
Type 1 diabetes 6 (2.2%)
Type 2 diabetes 35 (13.1%)
Renal failure 8 (3%)
Chronic Obstructive Pulmonary Disease (COPD) 13 (4.9%)
Treatments
Diabetic drugs (A10) 46 (17.2%)
Cardiovascular system agents (C01) 14 (5.2%)
Anti-hypertensives (C02) 8 (3%)
Diuretics 39 (14.6%)
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inclusion in the study (e-Fig. 3). The poor quality of some 3D scans
(under 4%) reduced the study cohort to 267 participants with valid
data. Table 1 presents the characteristics of the study population.

3.2. OSA prediction based on BERLIN and NoSAS questionnaires

A BERLIN score �2 corresponded to a sensitivity of 61% and a
specificity of 50%, with a positive predictive value of 0.57. A NoSAS
score �8 was associated with an auROC of 0.7, with a sensitivity of
nearly 90%, a specificity of less than 40%, and a high positive pre-
dictive value of 0.77.

3.3. OSA prediction from morphometric data alone

3.3.1. Reproducibility of the procedure
The 18 replicates for the member of the technical staff are well

clustered in the PCA morphospace, by comparison with the shape
variation observed in the cohort (Fig. 4).

3.3.2. Influence of the number of PCs retained
A preliminary test involving LDA was undertaken with an

increasing number of PCs (from 2 to 49) as input data. Since this
classifier is linear by nature, it might not be optimal for our case
study, but it is nevertheless considered sufficient to examine the
discriminating power of the PCs. A simple Leave-One-Out Cross-
Validation (LOOCV) procedure was applied for model evaluation to
preserve the headcount. For up to 10 PCs (Fig. 5), the auROC was
about 0.69 (e.g. with a sensitivity of 74%, and a specificity of 54%
when 4 PCs were processed). After that point, the auROC decreased
as more PCs were added; this is a classic cost of dimensionality in
classification tasks based on morphometric data.

3.3.3. Algorithm testing
Further tests were carried out with the first 2 to 5 PCs, by

applying 13 different supervised algorithms, varying from simple to
more advanced ML techniques (Table 2). Given the cost of dimen-
sionality with LDA and the higher complexity of most of the other
ML algorithms tested, a parsimonious strategy concerning the
number of feature inputs was adopted. Further experiments
therefore took into account only 5 PCs at most. Whatever themodel
and the number of PCs retained, the auROC values were within the
0.62e0.70 range (i.e. always clearly better than 0.5, corresponding
to random classification). In more detail, the ANN and RF algo-
rithms probably suffer from a lack of data to be fully effective. The
most efficient were LDA, Adaboost, extra trees classifier, XGBoost,
and LR, with from 3 to 5 PCs. The LR classifier (including the first
3 PCs as feature inputs) was preferred at this step because it is faster
to compute. Scores obtained by nested cross-validation yielded an
auROC of 0.70, with a sensitivity of 74%, and a specificity of 60%
(Fig. 6).

3.4. OSA prediction from morphometric data, including
questionnaires and anthropometric data

Using simple descriptive statistics (Student's t-test or Mann-
Whitney U test, depending on the nature of the variables), ten
anthropometric variables and symptoms were identified as signif-
icantly discriminating for OSA: hip, neck, and waist circumferences,
age, BMI, Mallampati class, hypertension (HTA), witnessed apnea,
and sleepiness while driving. These features were therefore pro-
cessed together with the probability of belonging to the OSA risk
group, provided by the LR model previously built from morpho-
metric data alone. An XGBoost algorithm was applied at this step
since it accepts both categorical and numerical variables as feature
inputs. The inclusion of the above-mentioned variables in the

https://www.r-project.org/
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Fig. 4. Projection onto the morphospace of the cohort (in blue) and of a member of the technical staff acquired 18 times (in red); left: PC2 vs. PC1; right: PC3 vs. PC1. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 5. Influence of the number of PCs retained on the auROC score.

Table 2
The auROC evaluated by nested cross-validation for various ML models, and incor-
porating from 2 to 5 PCs as explanatory variables. In bold, the scores above 0.7. ANN:
Artificial Neural Network; k-NN: k-nearest neighbors; LDA: Linear Discriminant
Analysis; LR: Logistic Regression; poly.: polynomial; QDA: Quadratic Discriminant
Analysis; rbf: Radial Basis Function; RF: Random Forest; SVM: Support Vector
Machine.

NUMBER OF PCS INCLUDED

2 3 4 5

NAIVE BAYES 0.689 0.668 0.660 0.664
LDA 0.699 0.703 0.697 0.703
QDA 0.690 0.671 0.645 0.629
LR 0.699 0.704 0.697 0.703
K-NN 0.694 0.673 0.674 0.655
SVM
RBF 0.690 0.651 0.655 0.617
POLY. 0.699 0.669 0.639 0.615
LINEAR 0.699 0.701 0.689 0.702

RF 0.669 0.680 0.671 0.662
EXTRA TREES 0.694 0.701 0.688 0.673
ANN 0.648 0.645 0.671 0.702
ADABOOST 0.699 0.700 0.703 0.695
XGBOOST 0.691 0.697 0.682 0.675

Fig. 6. The ROC curve and associated 95% confidence interval for the LR classifier, with
nested cross-validation, considering the first three PCs derived from the morphological
data alone. The auROC scores are also reported.
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model slightly boosted performance scores: the auROC reached
0.75, with a sensitivity of 80% and a specificity of 56% (Fig. 7).

3.5. Visual prediction of OSA

Shape differences between OSA and non-OSA groups were
visualized using the linear discriminant function computed on
80
5 PCs. Predicted means for the two groups were unscaled and back-
transformed on the coordinate scale. The reference mesh used to
build the template was warped accordingly, using TPS. Shape
changes predicted by the LDA (Fig. 8) show that, on average, people
belonging to the OSA group have relatively shorter and thicker
necks, together with stronger retrognathism than those in the non-
OSA group. This result is in conformity with the classical physical
characteristics of OSA patients observed by clinicians [7,50].

4. Discussion

4.1. Overall evaluation

Several studies have previously assessed the performance of
screening tools and scales, including the Epworth sleepiness scale
(ESS), and the Berlin and NoSAS questionnaires [51e53]. Although
these methods are widely used nowadays for OSA identification,
their low specificity leads to a high burden of subsequent negative
PSG [53e55]. The accuracy of questionnaires depends on popula-
tion characteristics [56,57]. In a recent meta-analysis evaluating the
Berlin questionnaire in different settings (n ¼ 8222), pooled spec-
ificity varied from 33% to 47% [51], a range consistent with our
findings. Interestingly, the present study demonstrates that 3D
geometric morphometrics, combined with an appropriate ML al-
gorithm, exhibits a predictive performance for OSA diagnosis
similar to that obtained from questionnaires and data routinely
collected in sleep centers. When a selected set of anthropometric
characteristics and symptoms complement the 3D maxillofacial



Fig. 7. The ROC curve and associated 95% confidence interval for the XGBoost classifier,
with nested cross-validation, considering the probabilities provided by the LR model
together with a set of selected variables. The auROC scores are also reported.

Fig. 8. Predicted shape changes along the linear discriminant function between the
OSA and non-OSA groups. A) Predicted shapes for OSA and B) Non-OSA groups. C)
Colors represent the distances from the predicted OSA shape and the non-OSA shape.
(For interpretation of the references to color in this figure legend, the reader is referred
to the Web version of this article.)

Fig. 9. The learning curve of the XGBoost model established from morphological data
combined with questionnaire responses, and anthropometric data; the training auROC
score (in red) and cross-validation auROC score (in blue). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of
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data, the performance scores surpass those of the BERLIN ques-
tionnaire and advantageously complete those of the NoSAS ques-
tionnaire. Both these traditional methods present too low a
specificity to be fully operational. This new screening tool therefore
possesses the potential to bypass the complexity of current OSA
diagnostic procedures, thus improving access to care, and reducing
medical misclassifications. Another strength of our diagnostic tool
is its accessibility; 3D scanning can be conducted in a few minutes
during the daytime, in different settings, and even at home, at low
81
cost. Data acquisition does not require a high level of expertise, and
the analysis is fully automated. Note that the entire process can
easily be implemented as an end-to-end digital solution.

Existing studies have essentially been based on 2D analyses and/
or photographs [58e60]. To the best of our knowledge, only one
study has assessed anthropometrics combined with questionnaires
and 3D scanning, reporting a sensitivity of 74% and a specificity of
63% [28]. Our study consistently improved performance, by
10e15%, by implementing 3D scans together with ML compared to
BERLIN and NoSAS questionnaires. Future developments should
explore the most effective combination of items to be included to
diagnose different OSA phenotypes.

4.2. Perspectives and limitations

4.2.1. Potential sources of error
It should be kept in mind that, as with any physical measure-

ment, the 3D landmarks introduced in the ML algorithms are
potentially flawed. These errors may occur during acquisition,
mainly due to patient movements, but also due to the accuracy/
resolution of the scanning device itself. Even without any patient
movement, there may be homology defects between patients.
Finally, the manual placement by the operator of the seven land-
marks is also subject to minor errors of interpretation. Neverthe-
less, the acquisition procedure appears fairly reproducible with
respect to the variability observed within the cohort (Fig. 4). As a
result, although all these sources of error coexist, any impact on the
problem at hand should be minor.

4.2.2. The impact of established models
Special attention should be paid to the learning curve of the

model established from shape data combined with anthropometric
data and questionnaire responses (Fig. 9), which depicts both
training and cross-validation scores (together with their 95% con-
fidence interval) as a function of the size of the training dataset.
Once 75 to 90 patients have been included during the learning
phase, the training scores are high, with an auROC of about 0.95,
whereas cross-validation scores are much lower, around 0.68.

This result is not surprising, as the model overfits this relatively
small learning dataset, while instances are lacking to produce high
this article.)
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validation scores and appropriate generalization capabilities for
unseen instances. As expected, as the training set increases in size,
the training score decreases (the model starts to underfit the
dataset), while the validation score increases. Ultimately, both
curves are supposed to converge when there are enough data to
train the model optimally. From that point on, adding more data
should no longer be beneficial, but better model performance
might eventually be obtained by implementing new engineering
features, or by building another, more complex model. This point of
convergence may be associated with the limit of irreducible error,
which is intrinsically linked to the problem at hand. What is
important here is that the convergence point is currently far from
being attained, suggesting great opportunities for improvement in
the prediction of OSA risk. It is difficult to estimate the number of
patients that would be required to reach this convergence point,
but it is reasonable to assume that the inclusion of more than a
thousand patients would be necessary. In any case, a learning curve
obtained by the XGBoost model, established from morphological
data combined with questionnaire responses and anthropometric
data (Fig. 9) is slightly superior to the best models computed from
the morphological data alone (e-Fig. 4 in the Supplementary Ma-
terial), either because these later models quickly reached a limit
auROC score of ca. 0.7 or less, or because the room for improvement
when including more patients seems to be smaller.

As this study was limited to Caucasian men only, further studies
should investigate differences in upper airway and craniofacial
structures in relation to sex and ethnicity [61,62]. As obesity is one
of the main risk factors for OSA, due to fat deposits around the
upper airways that narrow the airway during sleep [63], obese
patients (BMI�35 kg/m2) were excluded from our study, so as to
focus more specifically on maxillofacial characteristics. It would be
interesting in future studies to include different BMI profiles.

A cohort suitable for such studies is realistic, despite its
impressive size, as the epidemiology of sleep apnea concerns over
one billion people worldwide.

5. Conclusion

The present study clearly demonstrates a link between maxil-
lofacial geometry and the risk of sleep apnea. Although the cohort
under study is large (almost 300 patients), it is not sufficient to
encompass the entire range of maxillofacial shape diversity, so that
model outputs will only be partially successful in predicting a
syndrome as complex as sleep apnea. Nevertheless, the tool pro-
posed in this study (combining the 3D geometry of patient scans
processed by geometric morphometrics with machine learning)
already presents a capacity for discrimination beyond that of the
tools currently available (i.e. NoSAS and BERLIN questionnaires), an
encouraging result on which to base further studies.

The informative morphometric data retained here is contained
in the first 2e5 PCs (i.e. the overall geometry observable in Fig. 8).
With a larger cohort, three further gains become possible. Sub-
stantial improvement should be observed in predictive perfor-
mance, as suggested by the training curves. More PCs capturing
finer details of maxillofacial shape can be included and their in-
fluence comprehensively evaluated. As the OSA/non-OSA groups
are probably not linearly separable, more complex algorithms (such
as artificial neural networks or random forests) are potentially
better adapted, as greater quantities of data become available.

Clinicaltrials.gov:NCT03632382.
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