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a b s t r a c t 

The present study proposes a new software program to help researchers identify rock paintings from dig- 

ital images, rapidly producing high-quality documentation, in a user-friendly way. The three RGB colour 

channels of the digital image are first decorrelated and then stretched, a well-known technique used by 

remote-sensing specialists for over thirty years. In contrast with the approaches previously developed 

specifically for rock art, several data-whitening algorithms are used at this step: (regular) principal com- 

ponent analysis, zero-phase component analysis, Cholesky decomposition, and independent component 

analysis. These transformations produce different arrangements of the colour information, which never- 

theless share some important properties (e.g. the covariance matrix of the new channels equals the iden- 

tity matrix). The decorrelated data, previously stretched and scaled to fit the RGB space, are then con- 

verted into various colour spaces (selected from among the most popular): XYZ, HLS, HSV, LAB (CIELAB), 

Luv, CMY(K), YCrCb, and YUV. The most subtle colour variations will be better perceived in some of these 

newly produced, contrasted, false-coloured images. The researcher can then take advantage of supervised 

machine learning algorithms to isolate painted figures. At this step, binary pixel classification is per- 

formed either by logistic regression, support vector machine, or k -nearest neighbours, possibly including 

confident learning. There is no need for complex tuning at any point during the procedure, which lasts 

a few minutes at most, while a posteriori cleaning of the produced document is minimal. The software, 

written in Python, is provided as a stand-alone executable program for Windows, for broader diffusion, 

and as open-source code, which can therefore be adapted to the evolving needs of the community. 

© 2022 Elsevier Masson SAS. All rights reserved. 
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. Introduction 

One of the main difficulties encountered in the study of rock 

ainting is that of clearly seeing painted patterns with the naked 

ye. This problem is particularly true when pigments have suf- 

ered from decay and fading over time [1] . Colour contrast between 

aintings and background may have almost completely vanished, 

o that recognition of shape, texture, contour, and position (i.e., 

lements essential for analysis) becomes problematic. The intro- 

uction of consumer-grade digital CMOS cameras in the late 1990s 

as a game-changer, as these tools rapidly became popular for the 
∗ Corresponding author. 
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on-invasive documentation of rock paintings (see [2] for a sum- 

ary of method evolution). Common 24-bit colour images pro- 

uced by cameras and processed by computers are basically built 

rom three channels: red (R), green (G), and blue (B). Each is en- 

oded in 8 bits, resulting in 256 integers (i.e. 2 8 ). This colour model 

s commonly represented by a cube [3] , where each axis is a colour 

hannel (with integer values ranging from 0 to 255), and where 

lack and white, respectively correspond to the (0, 0, 0) and (255, 

55, 255) triplets. The additive combination of these three chan- 

els forms a palette containing 16.7 million colours. Even though 

his colour palette is vast enough to cover the full range of hu- 

an colour perception, estimated at 10 million different colours, 

he close examination of a raw digital image displaying a rather 

omogeneous painted panel, which may, in addition, have suffered 

https://doi.org/10.1016/j.culher.2022.09.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/culher
http://crossmark.crossref.org/dialog/?doi=10.1016/j.culher.2022.09.018&domain=pdf
mailto:Fabrice.Monna@u-bourgogne.fr
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rom weathering, does not provide more information than a close 

nspection of the scene itself. Researchers have therefore taken ad- 

antage of the post-processing capabilities offered by raster graph- 

cs editors (e.g. rescaling colour, manipulating saturation, etc.) to 

rtificially enhance the contrast between the painted figures and 

he background [4] (note that a similar approach that has recently 

een applied to rock art carving by manipulating 3D geometry in 

lace of colour [ 5 , 6 ]). In 2005, the introduction by Jon Harman of

Stretch® [7] led to a key breakthrough in methods for recog- 

izing and recording painted rock art [8] . This software program 

enefitted from decorrelation stretching procedures previously de- 

eloped by remote-sensing specialists to analyse satellite images 

 9 , 10 ]. Its underlying principle is quite simple: in the RGB space,

olour channels tend to show high levels of correlation, so that 

he pixels composing the image occupy a reduced space in the 

GB cube model. The goal is therefore to expand the volume of 

his envelope in order to artificially enhance the colour richness of 

he image. Such a boost is expected to facilitate differentiation of 

he painted parts from the background. According to the DStretch®

ocumentation [7] , the colour enhancement of the images operates 

n four steps. The first step relies on the decorrelation of the colour 

hannels using a Karhunen-Loève transformation, also known as 

LT or Hotelling transform, which is in fact a principal component 

nalysis (PCA) [11] , based on the covariance matrix [12] , although 

he correlation matrix may also be used at this step [7] . The re-

ulting variables are therefore uncorrelated in a new orthonormal 

asis in R 

3 . The second step is stretching, which rescales each 

omponent by normalizing the variances of the eigenvectors. The 

hird step is a rotation of the coordinate system, which brings the 

ransformed data back into their original (RGB) vector space. At 

his point, the transformed RGB values, remapped on to a 0–255 

ange, are converted into other colour spaces, including new ones 

pecifically designed to emphasize yellow, red, or blue/black pig- 

ents. Once the painted figures appear, they can be isolated semi- 

utomatically using a colour-picker tool, together with an appro- 

riate tolerance value to determine how closely the pixels compos- 

ng the entire image must match the colour picked in order to be 

nally selected [2] . They can also be traced manually with the help 

f a raster or vector graphics editor, using the false-coloured im- 

ge thus produced as a background layer. The DStretch® program 

s distributed as a plugin compiled for ImageJ, an open-source 

ultiplatform software for image processing [13] . More recently, 

ogerio-Candelera and co-workers [14] used only a PCA to produce 

 false-colour image with three uncorrelated bands. These bands 

orrespond to the three principal components (PCs) obtained after 

hifting and rescaling the values in a range compatible with 8-bit 

ncoding (see also [1] for an example of PCA application). As the 

mount of information accumulated by the PCs decreases from the 

rst to the last component, PC1 is expected to represent most of 

he variation contained within the original three bands. After close 

xamination of several experiments, both Rogerio-Candelera and 

o-workers [14] and Domingo and co-workers [1] concluded that 

he minority components PC2 and PC3 are the most informative for 

ock art studies. Cerrillo-Cuenca and co-workers [15] took advan- 

age of these observations and developed PyDRA, a distributable, 

pen-source application, which later evolved by including a finely 

unable, selective intensification of saturation or intensity [16] . In- 

erestingly, these authors also introduced unsupervised pixel clas- 

ification by applying a K-means algorithm that is expected to fa- 

ilitate documentation. 

Although no statistical analysis has investigated how rock art 

pecialists preferentially process images, it is reasonable to af- 

rm that DStretch® has been extensively adopted by the commu- 

ity [ 7 , 17–24 ], while a minority of scientists use a non-standard

ethod based on empirical image manipulation with raster graph- 

cs editors, such as Adobe Photoshop® (see [25] , and references in 
92 
2] ). Yet, as noted by Cerrillo-Cuenca and Sepúlveda [16] , although 

Stretch® is generally efficient, its data treatment remains some- 

hat opaque. This is true not only for the decorrelation stretching 

hase, but also during the elaboration of new colour spaces. Nu- 

erous options are available during the workflow, but the reasons 

hy and when they should be applied and tuned are not always 

ufficiently well explained. The plugin can be obtained on request 

rom the author under a compiled form, so that any further inspec- 

ion of the code requires a certain level of expertise. 

The PyDRA application possesses several attractive features. 

ts mathematical basis is clearly described in two published pa- 

ers [ 15 , 16 ], and the snippets written in Python 2.7 are readily

vailable at Github ( https://github.com/ecerrillo/PyDRA ), under an 

pen-source form. However, as no standalone version is provided, 

ts use implies the installation of a Python interpreter, together 

ith the necessary libraries, which is detrimental to dissemination 

mong a broader audience. Furthermore, the 2.7 version of Python 

sed for its development has now been discontinued; modifica- 

ions will thus be required to run the code on the current Python 

ersion. 

. Research aim 

In this study, we aim to provide the community with software 

for Extraction of Rock Art, i.e. ERA), to identify rock paintings 

rom digital images, and to produce high-quality documentation 

ery quickly, using the information-retrieval capabilities of ma- 

hine learning algorithms. Interestingly, the software is provided as 

 standalone executable for Windows, and as open-source snippets 

or Python 3.7 (and above). In contrast with previous approaches, 

ecorrelation of the RGB channels uses four different whitening 

ransformations. Once rescaled for 8-bit encoding, and reshaped in 

olour raster form, images are converted into a variety of colour 

paces, selected from among those most commonly used. Optional 

unings were carefully limited to a strict minimum, to simplify the 

rocess while maintaining high-level outputs. These options should 

fficiently counteract the deleterious effect of some particular dis- 

ributions of colour channels on colour enhancement. Fundamen- 

al principles are also discussed, because a better understanding of 

he underlying concepts will help the researcher to optimize the 

roduction workflow from image capture to final documentation. 

he quality of outputs produced by supervised machine learning is 

valuated. 

. Material and methods 

.1. Whitening the RGB channels 

Principles . Whitening (or sphering) transformations belong to a 

amily of methods for decorrelating and standardizing a set of vari- 

bles [26] . They are applied, in our case, to enhance the colour 

ichness of the image. An image can be seen as a data matrix, X 

 R 

n ×p , where each row, n, corresponds to a pixel, and p = 3 be-

ause there are three colour channels (RGB). Note, however, that 

ixel colour is encoded using a combination of integers. The first 

tep is to centre the data: 

 c = X − μ, (1) 

here μ corresponds to the vector mean of each channel. The re- 

ulting data matrix, X c ∈ R 

n ×p , possesses a zero mean and has a 

ovariance matrix, cov( X c ) = � ∈ R 

p ×p : 

= 

1 

n − 1 

X c X 

T 
c (2) 

ith n, the number of data samples (i.e. pixels). The goal is then 

o find a p × p whitening matrix, namely W , satisfying: 

 = W X c , (3) 

https://github.com/ecerrillo/PyDRA
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ith: 

ov ( Z ) = I p , (4) 

here I p is a p × p identity matrix, in other words a situation 

here all variables are decorrelated and possess a unit variance, 

nd where Z is the new, transformed data matrix. It can be demon- 

trated that the expressions above are equivalent to: 

 

T W = �−1 (5) 

The W matrix is not unique, as any p × p orthogonal matrix Q , 

ith Q 

T Q = I p , produces: 

 = Q �−1 / 2 , (6) 

here the W matrix satisfies Eq. (5 ) above. Geometrically, this in- 

olves a multivariate rescaling by �−1 / 2 , followed by a rotation by 

 . To go further, the W matrix can be rewritten using the eigende-

omposition of the covariance matrix, �, in the eigenvector matrix, 

 , and the eigenvalue matrix, �: 

= U�U 

T (7) 

Eq. (6 ) can be rewritten as: 

 = ( QU ) �−1 / 2 U 

T (8) 

Finally, one obtains: 

 = WX c = ( QU ) �−1 / 2 U 

T ( X − μ) (9) 

To summarize, the data, centred using their vector mean μ, are 

otated by U 

T to align with the eigenbasis, scaled by �−1 / 2 , and 

possibly) rotated again by QU . Note that without this final rota- 

ional step by QU , the data are already whitened as they are decor- 

elated, and each dimension possesses a unit variance. 

Algorithms . The issue is therefore to find relevant configurations 

f W , and thus an appropriate value for Q . Five possible (natural)

phering procedures have been discussed [26] . The most common 

rocedure, PCA whitening, simply uses W = �−1 / 2 U 

T . Note that, 

or PCA whitening, W is not unique, as U suffers from sign am- 

iguity. The ZCA whitening (aka Mahalanobis whitening, [27] ) is 

nique and implies the use of W = �−1 / 2 ; in other words, Q = I p .

n contrast with the above method, the data are rotated back 

y U to their original coordinate system. The Cholesky whiten- 

ng uses Cholesky factorization, well known in numerical computa- 

ion [28] . It decomposes a positive-definite matrix into the product 

f a lower triangular matrix and its conjugate component. Here, 

he precision matrix, another name for the inverse of the covari- 

nce matrix, �−1 , is decomposed as: �−1 = L L T . In this case, the 

hitening matrix W is unique and equals L T . Two additional proce- 

ures were presented by Kessy and co-workers (2018) [26] , which 

ither maximally compress the original variables (PCA-cor) or are 

aximally similar to them (ZCA-cor). They were nevertheless dis- 

arded here, as both produced almost identical results to either 

CA or ZCA whitening for all images tested. One other algorithm 

as considered: independent component analysis (ICA), as it was 

ecently and successfully applied to rock paintings [29] . It starts 

rom data whitened with PCA, which are rotated to maximize the 

on-gaussianity of their projection on to 3 new axes, thus produc- 

ng a new space where the data are maximally independent (see 

30] for more details). This transformation can be accomplished 

sing the FastICA algorithm, here following the implementation 

ound in [31] . As a final step, and whatever the procedure applied, 

he Z ∈ R 

n ×p matrix is converted into the shape of the original 

aster, and the values are scaled to an integer 8-bit format to fit 

he 0 - 255 range. 

Optional further colour enhancement. Two different approaches, 

hich are not mutually exclusive, can be applied to further en- 

ance colour distribution. The first consists in rapidly selecting a 

art of the image by hand, taking care to focus on the area of in-

erest. The vector μ and the � and W matrices are computed from 
93 
his subset of selected pixels, X S , and upon this basis Z is drawn for

he entire image. Importantly, the remapping of Z in 8 bits takes 

nto account the minimum and maximum values found in the sub- 

et, and not in the entire image, which is subsequently clipped of 

ts values below 0 or above 255. The second approach consists in a 

inear contrast stretching with saturation, also known as percent- 

ge linear contrast stretch [32] , where Z is rescaled to include all 

alues that fall within an interval corresponding to the ( α/2) th and 

100- α/2) th percentiles (with α configurable). 

.2. Converting the whitened data to other colour spaces 

The four resulting images (one for each whitening procedure) 

re then converted into each of the eight following colour spaces: 

YZ, HLS, HSV, LAB (i.e. CIE L ∗a ∗b), Luv (i.e. CIE L ∗u 

∗v), CMY(K),

CrCb, and YUV, which were specifically chosen as they are among 

hose most commonly used. Describing each of these colour spaces 

nd their respective properties is outside the scope of the present 

tudy, but the reader will find this information in the vast spe- 

ialized literature (e.g. [ 33 , 34 ]), while the mathematical description 

f the transformations performed by OpenCV is available at https: 

/docs.opencv.org/3.4/de/d25/imgproc _ color _ conversions.html . As a 

esult, 36 colour images are produced: 4 whitening procedures × 9 

olour spaces (i.e. one whitened RGB image plus its conversion into 

 other colour spaces). The reason for this abundance is to supply a 

arge set of false-coloured images, through which the operator can 

asily navigate to identify the painted areas, without any fastidious 

anual tuning. 

.3. Machine learning for the automatic delineation of painted areas 

Underlying idea . The integration of machine learning aims to 

roduce documentation close to the best standards of publication, 

ith minimum intervention by the operator. Rather than the un- 

upervised method previously applied [16] , a supervised approach 

as preferred here, because the operator can train the model 

ery specifically to fit the desired objective [35] . Note that Lerma 

36] previously tested a similar form of supervised classification, 

aking as feature input the three visible spectral bands of an image 

lus one near infrared. In the present study, a simple binary classi- 

cation (painted vs non-painted) is presented first, while situations 

ith multi-coloured paintings will be discussed later. 

Supervision . This step consists in labelling two classes: pixels 

elonging to the painted areas, and those belonging to the sub- 

trate. Ideally, supervision should be at pixel level to minimize the 

isk of erroneous labelling [37] . This pixel-wise task would be quite 

edious, particularly since good representativity is sought. Conse- 

uently, supervision is performed by drawing two groups of curves 

of adjustable thickness) on the image, each at best correspond- 

ng to one class. However, such rough-and-ready supervision will 

nevitably lead to some errors (i.e. pixels erroneously included in 

oth classes). 

Additional feature engineering and feature selection . To each pixel 

oordinate corresponds a vector containing 108 values (36 im- 

ges × 3 colour channels). Processing this entire dataset as input 

s certainly not the best option, as it includes variables without 

ny discriminating power (i.e., channels where no difference can 

e noticed between painted areas and substrate). It would consid- 

rably slow down the training and prediction phases, and might 

ven have a deleterious effect on output quality. Automatic prese- 

ection therefore retains the n most discriminating variables, pos- 

essing the n highest values of the t -statistic ( n is configurable, 

ith n = 30 channels as default value). It is worth mentioning that 

ven if the distribution within each group is non-normal, variable- 

y-variable, the two-sample t -test can be used at this step, as the 

entral limit theorem applies when sampling is sufficiently large 

https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html
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38] . Using thick curves for supervision will always produce thou- 

ands of labelled pixels. The n variables thus retained are never- 

heless strongly correlated, so that a PCA must be performed. This 

educes the number of (decorrelated) principal components to m 

 m < n ), allowing the total variance to be expressed at a given level

also configurable by the operator, with 97% as default value). 

Algorithms . At this point, the aim is to build a mathematical 

odel (i.e. a decision rule) allowing binary pixel classification. In 

ther words, the two categories: y c , (with c ∈ {0;1} for background 

nd painted pixels, respectively) must be predicted from x , a vector 

escribing the set of m previously built features, x = {PC 1 ,...,PC m 

}. 

here are several different techniques for solving such a classifica- 

ion problem, among them naïve Bayes, k -nearest neighbours, lo- 

istic regression, linear and quadratic discriminant analysis, artifi- 

ial neural network, and random forest, to cite only the most popu- 

ar. They can also be combined using voting classifiers. Many com- 

etitions open to both researchers and enthusiasts seek to find the 

echnique producing the highest performance for a specific prob- 

em, using a given dataset. The winning workflow generally in- 

olves complex algorithms, fine hyperparameter tuning, and heavy 

alculation load. Even though its performance will formally sur- 

ass that of more classical algorithms, the gain is often modest. 

ere, the idea is not to find the best algorithm through a long and

omplex optimization process (as manual cleaning of the resulting 

mage will undoubtedly be necessary at the end), but to provide 

ood results quickly. This is particularly true in our case, since the 

est algorithm is likely to vary with the dataset (i.e. the image pro- 

essed) and the choices made by the operator during supervision. 

or these reasons, only three of the simplest approaches are im- 

lemented in the software: logistic regression (LR), support-vector 

achine (SVM), and k -nearest neighbours (KNN). 

For logistic regression, a new variable, z , is built from a lin- 

ar combination of weights, w , and sample features: z = w 

T x . The

robability of belonging to a particular class is provided by the 

ogistic sigmoid function: �(z) = 1 / ( 1 + e −z ) , with �(z) ∈ [ 0 ; 1 ] ;

eights are optimized using the L-BFGS algorithm; regularisation 

s operated using an L2 penality. The support-vector machine algo- 

ithm aims to maximize the margin between the decision bound- 

ry hyperplane and the closest training samples with the goal of 

eparating the two classes. The SVM can also manage data that 

re not linearly separable using the so-called “kernel trick”, which 

ransforms the data into a higher dimensional space. Here, a radial 

asis function (RBF) is applied. The algorithm provides the proba- 

ilities of belonging to each class. Finally, the KNN algorithm is a 

on-parametric machine learning technique, which determines the 

 -nearest neighbours (here k = 31) and simply assigns a class after 

ajority voting. 

For more details about these methods, the reader is invited 

o refer to the abundant specialized literature, e.g. [39–41] . Once 

he classifier is trained, in other words once the mapping func- 

ion f( x ) → y c is optimized, the model is applied to the entire im-

ge, and predictions are made for each of the pixels composing the 

mage to identify its class: background or painted pixel? For the 

ake of speed, the traditional split into training and test datasets 

the first used to train the model, and the second for performance 

valuation), possibly including a grid search for hyperparameters, 

as not applied. Since the supervised dataset is very large and the 

omplexity of classifiers low, models do not suffer from overfitting, 

nd thus, from difficulties in successfully generalizing to unseen 

ata [42] . Assessing performance scores would also be pointless in 

ur case, since outputs are visually evaluated. By default, the LR 

odel is applied to the entire set of supervised pixels. This model 

enerally produces good results quite quickly. Its outputs may thus 

apidly provide valuable information about how the operator could 

mprove final documentation quality: e.g., by increasing the num- 

er of supervised pixels, thus focusing on a specific area of the 
94 
mage, or by changing the default settings used for feature engi- 

eering (e.g., number of best channels retained, variance expressed 

y PCs, etc.). 

Confident learning . Recent methods have been specifically devel- 

ped to identify potential noise in the labelling mentioned above, 

nd to integrate dealing with this common issue into the learning 

rocess (see [43] for more details). Noisy data are pruned using 

robabilistic thresholds, the level of noise is estimated, and exam- 

les to train the models are ranked with confidence. This confident 

earning approach is integrated into the ERA software to comple- 

ent the more conventional learning processes. 

Image blurring . In the output images, a few pixels may erro- 

eously stray beyond the segmentation borders of painted areas. 

pplying a Gaussian blur to images may help to eliminate such 

alse positives, by smoothing out image noise, but at the expense 

f detail. By default, a square 5 × 5 px kernel is applied, but its 

ize can be modified. 

.4. Practical implementation 

The pixel envelope volume within the RGB cube was 

alculated using the free R programming language ( https: 

/www.r-project.org/ ), with the tiff, misc3d, oce, and RGL li- 

raries, using a three-dimension kernel density estimate, 

ith a cut-off of 99.9%. The ERA software itself is written in 

ython 3.7, with the numpy, scipy, scikit-learn, qimage2ndarray 

 https://github.com/hmeine/qimage2ndarray ), OpenCV, and 

yQt5 (or PySide) libraries, together with the whiten func- 

ion (modified after https://gist.github.com/joelouismarino/ 

e239b5601fff2698895f48003f7464b ). It is made available, to- 

ether with a standalone executable version for Windows, as 

upplementary Material SM1, at the following internet address: 

ttps://gitlab.huma- num.fr/fmonna/era- extraction- from- rock- art/ 

/tree/Paper _ Supp _ Mat . Fig. 1 depicts the layout of the page 

edicated to data preparation. General principles, options, and 

orkflow are discussed in detail below, and in the accompanying 

ser manual, included in Supplementary Material SM1. 

.5. Visual evaluation 

During the elaboration of the ERA software, dozens of images 

ere processed. Outputs were evaluated visually, by rock art ex- 

erts, based on the time required in post-processing to attain the 

ighest standards of archaeological documentation. 

. Results and discussion 

.1. Basic workflow 

The rock art painting used here as the first example belongs 

o the Okunev culture, which existed in the South Siberian steppe 

uring the Bronze Age (260 0–180 0 BC). It represents the face of 

 deity on a brownish rock, with orange lichen colonizing some 

arts of the surface, and dark cracks. The image (3888 × 2592 px, 

aved in high-quality JPG format) was captured at Tarpig Moun- 

ain, as orthogonally as possible to the panel surface, using a DSLR 

ANON EOS 400D camera ( Fig. 2 a). The 3 channels composing the 

mage are strongly inter-correlated, as illustrated by their projec- 

ion in the RGB cube ( Fig. 2 a). The envelope of the input picture

ccupies only about 7% of the full RGB colour space, explaining 

hy the image appears so homogeneous. When whitening is ap- 

lied, the envelope increases considerably, occupying more than 

1% of the cube, whatever the procedure ( Fig. 2 b), with slight dif- 

erences because stretching is performed after the rotational step. 

olour richness is basically the same in all cases, but the result- 

ng images are not all equally useful to identify the painted areas. 

https://www.r-project.org/
https://github.com/hmeine/qimage2ndarray
https://gist.github.com/joelouismarino/ce239b5601fff2698895f48003f7464b
https://gitlab.huma-num.fr/fmonna/era-extraction-from-rock-art/-/tree/Paper_Supp_Mat
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Fig. 1. Layout of the ERA software. The processed image represents several images of the Xiongnu - Xianbei period; in the middle, a rider with an eagle over an earlier 

image of an animal in a different shade of red (original colour). The image was captured at Kavkazskoe, South Siberia, Russia. 
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ere, the Cholesky and FastICA transforms seem to be the most 

ppropriate. Note that FastICA produces results visually different 

t each run, due to its stochastic nature, but that the data struc- 

ure remains unchanged (i.e. the three channels are sometimes re- 

rranged and/or the values reversed). Interestingly, Cerrillo Cuenca 

nd co-workers (2021) reported that decorrelation by FastICA of- 

en isolates paintings more sharply than PCA, probably because ICA 

eeks to separate superimposed components, while principal com- 

onents are computed in order, according to the amount of varia- 

ion they represent [29] . After colour conversion, the operator can 

apidly identify the best colour image(s) and/or one specific grey 

hannel by toggling between images, and can also supervise pixel 

abelling, with black for painted areas, and red for background 

 Fig. 2 c). Features corresponding to the values of supervised pix- 

ls for each channel are extracted, the best channels are identified 

nd selected, PCA is computed, and the machine learning model 

s trained. For the Okunev painting, applying the trained LR model 

o the entire set of pixels composing the image produces good re- 

ults. The painted areas are emphasized in black or in their true 

olour with no (i.e. white) background, or in black on the original 

olour image ( Fig. 2 d). Another output is systematically produced 

sing confident learning (not shown in Fig. 2 ). Most of the time, 

o great difference was observed between results with or without 

onfident learning. In some situations, however, confident learning 

learly produced better results, probably because the training set 

ontained too many mislabelled pixels. During these tests, it was 

lso noticed that the slower KNN model generally produced out- 

uts similar to LR. The SVM model often provided outputs with 

 little bit less noise, but such improvements require more com- 

utation time (several minutes may be necessary). As each image 

ossesses its own characteristics, the final choices are left to the 

esearcher’s appreciation, based on visual evaluation by the expert, 

or more versatility. The default parameters are nonetheless appro- 

riate as a first guess, in most situations. 
95 
.2. Optional colour enhancement 

Depending on the distribution of the input pixels, the benefi- 

ial effect of the sphering transformation described above may be 

odest. Just a handful of pixels falling close to the corners or the 

dges of the RGB cube (unrelated to the painted area) would be 

ufficient to impair the colour enhancement of the entire image. 

he presence of outliers may have a drastic impact on the mean, 

he covariance matrix, and thus subsequently on the PCA transfor- 

ation, but above all on the final rescaling in 8-bit format, which 

inearly remaps the Z matrix by making the minimum value coin- 

ide with 0, and the maximum with 255. 

The Okunev painting from the Tarpig Mountain is used again 

ere to show the effect of the two options available for further 

olour enhancement ( Fig. 3 ), in comparison with the default pro- 

essing depicted in Fig. 3 a, all using the Cholesky whitening proce- 

ure. For subset-based enhancement, the operator needs to man- 

ally select areas covering both the painted areas and the sub- 

trate around the figure of interest ( Fig. 3 b). In other words, the 

range lichen growing on the rock must be set aside, as must the 

racks and vegetation behind the painted panel. As whitening and 

tretching parameters applied to the entire image are computed 

n the basis of this selection alone, the influence of troublesome 

lements in the rest of the image is somewhat minimized. Conse- 

uently, the pixels occupy a larger volume, ∼33% of the RGB cube 

versus ∼23% for default processing). The painted figure is slightly 

etter identified ( Fig. 3 b). However, although manual selection was 

erformed carefully, some pixels were incorrectly included (e.g., 

iny patches of lichen), and the contrast between the figure and its 

ubstrate is not optimally increased. Contrast boosting using linear 

tretching with saturation produces a much better output, at least 

n this example ( Fig. 3 c). With α = 2%, the deleterious effects of 

outlier) pixels below the 1 st and above the 99 th percentiles are 

emoved within each RGB channel. Since these troublesome pix- 
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Fig. 2. Typical workflow with the ERA software. (a) Original image of an early Bronze Age rock painting from Tarpig Mountain (South Siberia, Russia), and the position of 

the pixels composing the image in the RGB cube; (b) whitening and colour conversion step, with the projection of pixels in the RGB colour space; (c) data preparation, 

including selection of one or several channels from which the supervision is operated; manual supervision on the image (painted areas in black, and substrate/background 

in red); feature engineering; (d) training, prediction, and production of the final documentation. Occupation, expressed as a percentage, represents the part of the RGB cube 

filled with image pixels. 

96 
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Fig. 3. The effect of optional further colour enhancement compared to the standard procedure. (a) default settings; (b) manual selection of pixels on which whitening 

parameters are computed; (c) contrast boosting by linear stretching with saturation. For each processing method, the resulting projection of the pixels in the RGB cube is 

provided, as well as the volume of their envelope, expressed as a percentage of the whole. 
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ls are not very numerous, α = 2% is sufficient to increase the 

ixel envelope in the RGB cube to 88%. The figure can then be seen

uch more clearly ( Fig. 3 c). 

A synthetic image was constructed to investigate which colour 

nhancement method should be applied in a challenging context, 

here extraneous elements are included in the scene ( Fig. 4 a, left). 

he background was first filled with a pinkish RGB colour, set 

o (155, 85, 102). Two texts written in similar colours were then 

dded in the foreground: ‘ERA’ in the bottom left using (151, 90, 

00), and ‘Rock Art’ in the top right using (155, 86, 105). Noise 

as then added to the image to mask the contours of the letters, 

aking the texts barely or even not at all distinguishable, espe- 

ially for ‘Rock Art’, where the colour is very close to that of the 

ackground. Finally, four uniform relatively large rectangles were 

lso added to mimic the possible presence of lichen (yellow), shad- 

ws (black), and bird droppings (whitish) on the rock substrate, or 

he inclusion of some sky (light blue) in the image. Note that such 

 configuration also takes into account the possible presence of a 

lack and white scale, often integrated in field photographs. The 

ixels constituting the original image only take up ca. 1% of the 

GB cube ( Fig. 4 a, left). The situation does not improve with the

efault processing, because the presence of the four coloured rect- 

ngles ruins the effect of the whitening procedure ( Fig. 4 b, left). 

he text ‘ERA’ is however distinguishable in several channels (e.g., 
97 
he HSV channel 2 after Cholesky whitening; Fig. 4 b, right), mak- 

ng manual supervision and extraction of the text possible, with 

nly a low amount of noise. The ‘Rock Art’ text cannot be per- 

eived. The same observations are made when linear stretching 

ith saturation is applied. In fact, α = 2% is not sufficient to re- 

ove the deleterious influence of the coloured rectangles, which 

over too large a part of the image ( Fig. 4 c). Increasing α would 

e tempting, but not appropriate, since this would lead to satu- 

ation (and loss of information) of the pinkish pixels falling close 

o the cube edge, which remain of interest. Operating whitening 

rom only a selected subset of pixels within the pinkish area is 

he best choice here. The pixel volume within the RGB cube in- 

reases dramatically to ∼ 59% ( Fig. 4 d, left), ‘ERA’ is better seen, 

nd interestingly, ‘Rock Art’ becomes visible on several channels 

 Fig. 4 d, right). Extracting both inscriptions is straightforward, us- 

ng two separate supervisions (one for each text): ‘ERA’ is isolated 

ith the same level of precision as previously, while ‘Rock Art’ is 

ow clearly visible, together with an unavoidable amount of noise, 

ue to the colour proximity of the text with the background. Both 

solated inscriptions can then be combined (e.g., in false colour) in 

 single image using a raster graphics editor ( Fig. 4 d, right). Super-

mposition of figures of different colours, such as those described 

n [44] , can therefore be tackled with the ERA software by process- 

ng each painting independently. 
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Fig. 4. Colour enhancement of a synthetically produced image, with extraneous elements. (a) the original image and its pixels in the RBG cube (text barely visible or 

completely invisible); (b) default processing (left); ‘ERA’ is visible and can be extracted by supervised machine learning algorithm (right); (c) contrast boosting (2%, left), and 

subsequent extraction of ‘ERA’ (right); (d) subset selection of pixels (left), and extraction of ‘ERA’ and ‘Rock Art’ by two different supervisions (right). The values, expressed 

as a percentage of the RGB cube, represent the volume of the pixel envelope. 
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.3. Guidelines for fast and efficient processing 

The aim here is not to offer a recipe that could be used in all

ircumstances, but rather to provide general guidelines to help the 

esearcher obtain the most appropriate results rapidly. During the 

hooting step, care should be taken to seek the most homogeneous 

ighting for the scene, because the whitening procedure will be 

uch more efficient in such a situation. Following the same prin- 

iple, a colour chart, a scale, or anything that has nothing to do 

ith the area to be treated should not be included in the image; 

uch elements introduce outlier pixels. As an example, Fig. 5 a was 

aptured at the Shalabolino rock art site, South Siberia, Russia. This 

ock painting depicts a human-like face, with an oblique cross be- 

ween eyes and mouth, which overlies a pre-existing rock carving 

epresenting a bovid animal. Fig. 5 b demonstrates how the pres- 

nce of a colour chart, which by nature integrates a large spectrum 

f colours, can ruin any colour enhancement of the painted panel, 

o such an extent that the original RGB photograph is more infor- 

ative than the processed version. In such a case, the best choice 

s to focus on the area of interest, trying to eliminate any worrying 

lements, as in Fig. 5 c. Unfortunately, it was not possible to elimi- 

ate the dark area behind the targeted substrate without cropping 

art of the painted zone. A subset of pixels was therefore selected, 

s well as contrast boosting, with α set to 1% ( Fig. 5 d). The face is

learly seen, for example with the ZCA whitening, transformed into 

he CMY(K) colour space (cf. Fig. 5 e). Switching from one channel 

o another (e.g., those displayed in Fig. 5 f–g) will avoid misinter- 

reting the painted parts and the background during the supervi- 

ion phase ( Fig. 5 h). The result is obtained within seconds ( Fig. 5 i).

e

98 
nfortunately, it is difficult to compare this black and white output 

ith that obtained with DStretch® and an associated raster graph- 

cs editor, as the rendered quality depends in great part on the 

perator’s skill in tuning the numerous settings of the DStretch®

oftware, but also in handling the colour picker tool and its as- 

ociated tolerance value to produce the final binary picture. The 

ace will be as clearly visible with DStretch® (especially with the 

RE colour space) as with ERA. However, despite several attempts 

o isolate the painted figure, the level of noise with DStretch® re- 

ained much higher than that observed with ERA. This result is 

robably due to the use of a single channel, or at best a combi- 

ation of three (if working on a colour image), whereas ERA ap- 

lies its machine learning algorithms to an array containing a very 

arge set of carefully selected channels. With PyDRA, the problem 

s rather that classification is unsupervised, so that models are not 

esigned for tasks as specific as those requiring supervision. 

. Limitations 

Poor-quality JPEG images should be avoided whenever possible. 

t is well known that this popular lossy compression, based on a 

lock-coding scheme, introduces visible artefacts in pixels and at 

lock boundaries, together with notable loss of detail in lowly con- 

rasted, homogeneous areas [45] . These artefacts will appear on 

everal channels after processing, undoubtedly reducing recogni- 

ion. Ideally, the photographs should therefore be captured in RAW 

ormat, and later saved in uncompressed TIF format before pro- 

essing. If this is not possible for any reason, a high-quality cam- 

ra should be used, and the photographs should be saved in the 
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Fig. 5. Processing early Bronze Age rock art paintings from the Shalabolino site, South Siberia, Russia. Pictures were captured in RAW format with a SONY RX100M3, resized 

to 1500 px for the largest side and saved in TIF format, before processing. (a) extended view of a painted panel, including an X-RITE colour chart, and (b) its processing 

(Cholesky whitening, RGB); (c) a new picture, taken closer to the rock, avoiding troublesome elements; (d) pixels manually selected, from which the whitening parameters 

are computed, and (e) then applied to the whole image (ZCA whitening, CMY(K)); the two first channels of this colour image (f,g) are used for supervision (h); the final 

output using logistic regression (i). 

Fig. 6. Processing of an image representing an early Bronze Age human figure. It was captured with a Canon EOS 5D Mark II, at Oya river, South Siberia, Russia. The original 

picture was 3744 × 5616 px in size and was saved in high-quality JPEG format. For further treatment, it was rescaled to 20 0 0 × 30 0 0 px. (a) original image; (b) DStretch®

processing with the YRE colour space; (c) false-coloured image produced by ERA using Cholesky decomposition and YCrCb colour space; (d) channel 1 of the CMY(K) colour 

space after Cholesky decomposition by ERA; (e) attempt to extract the figure after supervision with the LR algorithm of ERA; (f) final documentation produced manually 

from ERA outputs. ERA images were produced with a contrast boost of 2%. 
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ighest possible JPEG quality. The ERA software is not demand- 

ng in terms of computational resources, since it can run on a 

onsumer-grade computer, delivering outputs within seconds, or at 

ost within a few minutes. Depending on the amount of memory 

nstalled, however, resizing very large pictures may be necessary, 

s more than 100 one-channel images are produced from a single 

GB photograph. 

The ERA software cannot accomplish miracles: results will de- 

end above all on the degree of pigment alteration. Elements lost 

ver the course of time will never be recoverable. The machine 

oes not seek to replace the expert eye, as many crucial choices 

ust still be made, in particular in terms of interpretation, and 

ence in the supervision, cleaning, and adjustments of the out- 

uts. For example, when applying machine learning, one should be 

ware that the quality of the training set used for supervision is of 

ital importance: it must be truly representative of the whole, as 

therwise the classification results will be poor. The noise present 

n the final documentation can be reduced by manual cleaning, or 

y increasing the blur radius, but at the price of lower recogni- 

ion of the pixels composing the painted figure. Note that extrac- 

ion by machine learning is always an optional step. The operator 

ill often encounter situations where pigments have almost com- 
99 
letely or partially faded, or where superimpositions are so com- 

lex that machine learning algorithms implemented in ERA will 

rovide improper or incomplete results. In such cases, documen- 

ation can still be prepared with a raster/vector graphics editor, 

rom an appropriate selection of RGB images or individual chan- 

els produced by ERA, perhaps by manually completing or clean- 

ng the images. To illustrate such situations, two additional ex- 

mples are reported, where ERA partly fails to produce adequate 

ocumentation by machine learning extraction. The first concerns 

n early Bronze Age human figure captured at Oya, South Siberia, 

ussia ( Fig. 6 ). On the original image, the figure is almost invis-

ble ( Fig. 6 a). Both DStretch® and ERA succeeded in enlightening 

he painted parts ( Fig. 6 b, c); they become even clearer when an

ppropriate single ERA channel is selected (e.g. channel 1 of the 

MY(K) colour space after Cholesky decomposition, Fig. 6 d). Unfor- 

unately, painting has to some extent vanished over time and most 

f the pixels composing the figure are disconnected, so that the 

raining set contains too many mislabelled pixels. As a result, the 

xtraction is only partial ( Fig. 6 e), unusable for the final documen- 

ation, which must be performed by manual tracing ( Fig. 6 f). The 

econd example is an image representing a part of a herd, captured 

n Oued In Djaren, Tadrat region, Tassili N’Ajjer National Park, Al- 



F. Monna, T. Rolland, J. Magail et al. Journal of Cultural Heritage 58 (2022) 91–101 

Fig. 7. Processing of an image representing a part of a herd, Oued In Djaren, Tadrat region, Tassili N’Ajjer National Park, Algeria. The picture captured with a SONY DSC-F828 

in RAW format, at a resolution of 3264 × 2448 px, was converted into TIF. (a) original image; (b) DStretch® processing with the YRE colour space; (c) DStretch® processing 

with the LWE colour space; (d) false-coloured image produced by ERA using FastICA and XYZ colour space; (e) false-coloured image produced by ERA using FastICA and 

CMY(K) colour space; (f) channel 2 of the CMY(K) colour space after ZCA decorrelation by ERA; (g) channel 3 of the CMY(K) colour space after FastICA decomposition by 

ERA; (h) extraction of parts of the figures after supervision with the LR algorithm; (i) attempt to extract the bovid in the foreground after supervision with the LR algorithm. 

ERA images were produced with a contrast boost of 2%. 
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eria ( Fig. 7 ). Three bovids organized on three distinct planes are 

istinguishable in some way on the original image ( Fig. 7 a). Again, 

rocessing by both DStretch® and ERA allows the figures to be 

uch more clearly recognised. This is true for the YRE option of 

Stretch® ( Fig. 7 b) and the combination FastICA and XYZ colour 

pace of ERA ( Fig. 7 d), for the two bovids in the background. The

ovid present in the foreground is visible with the LWE option of 

Stretch® ( Fig. 7 c), as well as with the combination FastICA and 

MY(K) colour space of ERA, which interestingly also marks the 

wo other bovids. At least two groups of tints, reddish and whitish, 

ith different shades, are present on this panel. The bovid in the 

oreground is whitish, the one in the middle is reddish, and the 

ne in the background is composed of both tints. Using channel 

 of the CMY(K) colour space after ZCA decorrelation ( Fig. 7 f) for

upervision, the reddish painting can be successfully extracted by 

achine learning ( Fig. 7 h). Note that the contours of the animals 

re well marked, even if they are thin. The whitish bovid in the 

oreground and inner parts of the one in the background are rea- 

onably well rendered using channel 3 of the CMY(K) colour space 

fter FastICA decomposition ( Fig. 7 g), but the automatic extraction 

f these areas falls short, except for one leg of the bovid in the 

ackground and parts of the bovid body in the foreground, where 

he whitish areas are very pronounced. This poor result comes 

ith a number of undesired pixels. In such complex circumstances, 

hen figures have partly and irregularly faded, when they overlap, 

nd/or when they are drawn with different pigments, manual trac- 

ng from images produced by ERA remains a possible solution. 

. Conclusions 

We demonstrate that the ERA software can be used easily, 

apidly, and efficiently to identify painted areas in a rock art con- 

ext presenting various colour schemes. The principles of whiten- 

ng procedures that enhance colour are described comprehensively, 

s are the two options for boosting contrast between paintings and 

ubstrate. Tuning options are limited, to facilitate the integration 

f ERA in a routine workflow by researchers unfamiliar with image 

rocessing. The ERA software is made freely available in a com- 

iled, straightforwardly executable version for Windows, and as an 

pen-source Python snippet for those who want to improve the 

ode (for example by integrating the unsupervised PyDRA proce- 

ure), or simply for those who desire complementary information 

bout calculations. Interestingly, the Python version also runs on 
100 
ndroid, provided that a Python IDE (such as Pydroid 3, available 

n Google Play) and appropriate libraries are installed. Tests per- 

ormed with a Samsung S5e tablet were conclusive. The images 

ere processed quickly without any issues related to memory lim- 

tation, which can be a decisive asset in the field. Guidelines fol- 

ow easy-to-understand principles, even without extensive knowl- 

dge of linear algebra, because they mainly rely on visual inspec- 

ion and analysis of the elements composing the scene. Machine 

earning algorithms act as a background process, taking as input 

eatures a large set of channels, and not merely three (for RGB 

olour images), or even only one (for greyscale images). This is 

hy the models trained by rough-and-ready supervision are often 

o efficient at producing documentation close to current standards 

n archaeology, with a low amount of noise (depending, of course, 

n the preservation of the painting and the quality of the training 

et used for supervision). In any case, if machine learning extrac- 

ion of rock painting fails, manual tracing from images produced 

y ERA remains a potential option. Interestingly, panoramas or or- 

homosaics produced by photogrammetry can be seamlessly pro- 

essed by ERA. Nothing prevents the integration of enhanced im- 

ges produced by ERA into a photogrammetrical workflow to tackle 

he question of the relationship between rock art and rock surface, 

s previously proposed [46] . Finally, for the sake of traceability, it 

s advised to report details concerning the workflow applied and, if 

ossible, to make available the original set of images used to pro- 

uce the documentation. Such good practices would not only allow 

esearchers to replicate the entire process, but also to compare ex- 

sting and future technical solutions seeking to bring to light rock 

aintings. 

ppendix A. Supplementary data 

Supplementary material related to this article can be found, at 

ttps://gitlab.huma- num.fr/fmonna/era- extraction- from- rock- art/- / 

ree/Paper _ Supp _ Mat . 
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